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Preface 

This report provides a life-cycle assessment (LCA) of the treatment of shredder residue (SR) in 

Denmark. 

 

The LCA was conducted for the Environmental Protection Agency by DTU Environment in the 

period March-July 2014, as part of a service agreement between the Danish Environmental 

Protection Agency and the Technical University of Denmark on research-based services in the field 

of waste management. The report is part of a larger survey on improved resource recovery of waste, 

focusing on the environmental as well as socio-economic consequences of different treatment 

scenarios for shredder waste, impregnated wood waste, wood waste for recycling and district 

heating pipes. The LCA was conducted using the EASETECH LCA model developed by DTU 

Environment for the environmental assessment of waste management systems and environmental 

technologies. 

 

The LCA was conducted in accordance with the LCA principles outlined in DS/EN ISO standards 

14040 and 14044. A critical review was carried out by external LCA experts from the Danish 

Technological Institute. A reference group consisting of Danish stakeholders with interests in SR 

management were asked to comment on the report as well. All critical comments from reference 

group and LCA reviewer were followed and the report was changed accordingly. 

 

The Danish stakeholders were represented by the Innovation Partnership for Shredder Waste, 

whose head of secretariat is Jette Bjerre Hansen, DAKOFA. 

 

The Danish Environmental Protection Agency was represented by Trine Leth Kølby and Thilde 

Fruergaard Astrup. 

 

The report was prepared by Alessio Boldrin, Line Kai-Sørensen Brogaard, Anders Damgaard and 

Thomas Astrup from DTU Environment. 

 

DTU 2014 
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Summary and conclusion 

Background 

Shredder residue (SR) is the “residual fraction from mechanical shredding of metal containing 

scrap originating from different sources and processed at recycling stations or metal recovery 

businesses” (Hyks et al., 2014). Danish SR is typically a mixture of 20% automotive shredder 

residues (ASR) and 80% of other residues originating from different sources (e.g. white goods, 

dismantled boats, industrial bulky waste, metal scrap). SR is currently disposed of in hazardous 

waste landfills in Denmark; however, legislative and economic issues mandate exploring alternative 

solutions for its management. 

 

Introduction 

The present report was prepared by DTU Environment and includes a life cycle assessment (LCA) of 

the treatment of SR in Denmark. The assessment compares the potential environmental impacts 

and depletion of abiotic resources in relation to four alternative scenarios, all including the sorting 

of recyclables and the management of residual material through thermal treatment and/or disposal 

in controlled landfills after biological stabilisation. 

 

Method 

The consequential LCA was carried out according to ISO standards 14040 and 14044, while the 

choice of life cycle impact assessment (LCIA) methods and impact categories followed the 

recommendations set out in the International Reference Life Cycle Data System ILCD handbook 

‘Recommendations for Life Cycle Impact Assessment in the European context’ (JRC, 2011). System 

expansion was used to solve process multi-functionality and to credit production avoided through 

reuse, recycling and recovery. The LCA was carried out using the EASETECH model developed at 

the Technical University of Denmark. Uncertainty calculations were carried out via Monte Carlo 

simulation, using 10,000 random variables to calculate the uncertainty distribution of the results.  

 

Scenarios 

Four scenarios for the treatment of SR were analysed. All scenarios included the sorting of 

recyclables (i.e. glass, plastic and metals) and the landfilling of fine residues <4 mm, which were 

assumed not suitable for thermal treatment because of their high content of heavy metals. 

Individual scenarios then included alternative treatment of the >4 mm residue remaining after 

sorting of recyclable materials: landfilling in Scenario 1 (S1), co-combustion at a waste incineration 

plant in Scenario 2 (S2), pyrolysis in Scenario 3 (S3), and co-combustion in a cement kiln in 

Scenario 4 (S4). 

 

Inventory data 

Inventory datasets regarding SR composition and treatment technologies were developed mostly 

based on literature data (i.e. reports and scientific articles) and information received from 

stakeholders, while data on background processes (e.g. energy production, raw material 

production) were retrieved mainly from commercially available LCA databases (e.g. Ecoinvent and 

ELCD). All datasets were associated with (at least some degree of) variations, a point which was 

taken into consideration when performing the uncertainty analysis. Other important assumptions 

included: sorting efficiency at the sorting plants, the degree of oxidation of metals after thermal 

treatment, the quality of recyclables, the quality of substituted materials, emissions from the 

thermal processes and marginal energy production. The latter was the focus of the sensitivity 
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analysis, where alternative marginal electricity production processes were used to test the validity of 

the results in possible future energy scenarios. 

 

Results 

The handling of SR according to Scenario 1 (landfill) shows overall savings for Global Warming, 

Photochemical Oxidant Formation and Terrestrial Eutrophication, mostly because of the benefits 

associated with recovering and recycling plastic and aluminium fractions. For all non-toxic impact 

categories and within uncertainty, scenarios with increased energy recovery (i.e. S2-incineration 

and S4-cement kiln) from SR >4 mm show significantly better environmental performance 

compared with the baseline landfill-based scenario (i.e. S1), indicating that increased energy 

recovery is a desirable option for the non-toxic categories. 

 

The results for the pyrolysis scenario (i.e. S3) are associated with significant uncertainty, mostly 

owing to the fact that the dataset for SR pyrolysis included rather broad ranges of data. This 

suggests that a clear conclusion on the environmental sustainability of pyrolysis as a treatment 

technology for SR is not possible with currently available data and understanding of the process. 

This means that further experimental investigations are needed before it can be concluded whether 

pyrolysis is a possible treatment technology for SR. 

 

 
Figure A - Normalised potential non-toxic impact from treatment of 1 ton SR in the four assessed 
scenarios (PE = person equivalent), including min-max ranges. 

Results for the potential toxic impacts show that the four analysed scenarios have comparable 

profiles for the impact categories Human Toxicity Carcinogenic, Particulate Matter and Ionizing 

Radiation. The three scenarios including the thermal treatment of >4 mm fractions all show 

increasing potential impacts on Human Toxicity non-Carcinogenic and Ecotoxicity compared with 

the baseline scenarios, owing to increases in emissions into the air, specifically As and Hg. In 

particular, the scenario based on co-combustion of >4mm in cement kiln (i.e. S4) presents potential 

impacts on Human Toxicity non-Carcinogenic and Ecotoxicity which are far larger than the other 

scenarios, owing particularly to emissions into the air of Cu, Hg and Zn. Compared to other 

technologies, these large impacts are connected with greater emissions, owing to less efficient flue 

gas cleaning at the cement plant and higher volatility of these metals due to higher temperature in 

the kiln. Such findings indicate the need for a pre-treatment step to produce an SR feedstock for the 

cement kiln with an RDF-like composition with a significantly lower content of metals. 
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Figure B - Normalised potential toxic impact from treatment of 1 ton SR in the four assessed 
scenarios (PE = person equivalent), including min-max ranges. 

When analysing the results by only looking at unitary input (i.e. 1 ton) of individual material 

fractions, normalised potential impacts on Global Warming indicate that recycling of both ferrous 

and non-ferrous metals provides the greatest savings, and it should thus be the first priority when 

analysing and designing a management scheme for SR. The next material is plastic, which can 

provide significant savings, especially if different resins are effectively sorted and the least possible 

amount of cross-contamination is achieved. 

 

 

 
Figure C - Normalised potential impact on Global Warming in the four assessed scenarios, 
disaggregated according to individual material fractions and presented as per 1 ton of material 
(PE = person equivalent). 
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Sensitivity analysis was employed to test the influence of Danish marginal electricity production on 

the results, including possible future electricity production sources such as natural gas and wind, 

instead of coal. The results show that changes to marginal electricity production do not affect the 

ranking of scenarios in most impact categories, while absolute values for potential impacts were 

diminished, especially regarding savings from recycling processes and energy recovery.  

 

The only exception was found in the Global Warming category, where scenario ranking was actually 

affected by marginal electricity technology. In fact, when offsetting natural gas, incineration 

provides similar savings to landfilling, while the scenario based on pyrolysis is close to not offering a 

net saving at all. When considering wind power as a marginal electricity production source, both 

scenarios based on incineration and pyrolysis showed worse performance than the scenario based 

on landfilling. 

 

Conclusion 

Based on data and current knowledge: 

 Diverting SR >4 mm from landfill provides benefits from an environmental perspective and 

should thus be supported. 

 Sorting and recycling metals, plastics and glass are beneficial to the environment and should 

thus be continued. Special focus should be given to increasing metal recovery, as this provides 

the greatest environmental benefits. 

 Incineration seems currently the best option for the treatment of >4 mm residues. 

 Pyrolysis seems to have worse energy efficiency but better downstream metal recovery (i.e. 

from the residues) than incineration. However, a clear conclusion could not be drawn, because 

results for pyrolysis were associated with significant uncertainty, owing to the lack of precise 

inventory data describing the process. Thus, any decision regarding the implementation of 

pyrolysis for treating >4 mm SR fractions should first be supported by pilot- to full-scale tests 

of the process, to deliver a better understanding thereof. 

 The co-combustion of >4 mm fractions in a cement kiln could potentially provide significant 

savings for the Global Warming impact category. However, the current composition of the >4 

mm fractions is not suitable, meaning that co-combustion in a cement kiln could only be 

implemented with a specially designed fraction. This option, in practice, would need a pre-

treatment step to produce a feedstock with an RDF-like composition. This should especially 

include the additional screening and sorting of metals, to reduce the content of heavy metals in 

feedstock going into the kiln. Besides technical reasons, this would also result in a significant 

decrease in emissions into the air of heavy metals, which are largely responsible (especially Cu 

and Zn) for high potential impacts reported for some of the impact categories. 

 Pre-treatment of the >4 mm SR should be considered, in order to reduce the content of heavy 

metals (especially Cu and Zn) in material fed into thermal processes. 

 The results and recommendations are not significantly affected by the choice of the marginal 

technology, meaning they may still be valid within a different future energy system. 
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Sammenfatning og konklusion 

Baggrund 

Shredderaffald (Shredder residues - SR) er restfraktionen fra mekanisk sønderdeling af metalskrot 

som stammer fra forskellige kilder der indsamles på genbrugsstationer eller direkte hos 

metalforarbejdningsvirksomheder. Inden den mekaniske shredding, udsorteres først alle de dele 

der kan sendes direkte til genanvendelse og genbrug. Dansk SR er typisk en blanding af 20% 

shredded bilskrot (ASR) og 80% der stammer fra forskellige andre kilder (f.eks. hårde hvidevarer, 

demonterede både, industrielt storskrald og andet skrot). SR er i øjeblikket kategoriseret som farligt 

affald i Danmark og deponeres derfor, men lovgivningsmæssige og økonomiske forhold giver 

mulighed for at undersøge alternative løsninger til håndtering af SR. 

 

Indledning 

Nærværende rapport er udarbejdet af DTU Miljø og omfatter en livscyklusvurdering (LCA) af 

behandling af shredderaffald (SR) i Danmark. Vurderingen sammenligner de potentielle 

miljøpåvirkninger og forbug af abiotiske ressourcer i forbindelse med fire alternative scenarier, der 

alle inkluderer sortering af genanvendelige materialer og forvaltning af restmaterialer ved termisk 

behandling og / eller slutdeponering efter biologisk stabilisering. 

 

Metode 

Konsekvens LCA´en blev udført i henhold til ISO-standard 14040 og 14044, mens valget af LCIA 

metoder og påvirkningskategorier fulgte anbefalingerne i ILCD Håndbogen " Recommendations for 

Life Cycle Impact Assessment in the European context " (JRC, 2011). Systemudvidelse blev brugt til 

at vurdere multifunktionelle processer og til at godskrive undgået produktion ved genanvendelse, 

genvinding og nyttiggørelse. LCA´en blev udført ved hjælp af modellen EASETECH, som er udviklet 

på Danmarks Tekniske Universitet. Usikkerhedsberegningerne blev foretaget vha. Monte Carlo 

simulering med 10000 stokastiske variable til at beregne usikkerhedsfordelingen af resultaterne. 

 

Scenarier 

Fire scenarier til behandling af SR blev analyseret. Alle scenarier inkluderede sortering af 

genanvendelige materialer (dvs. glas, plast og metal) og deponering af fint restaffald (<4 mm), som 

er uegnet til termisk behandling på grund af dets høje indhold af tungmetaller. De enkelte scenarier 

inkluderede forskellig behandling af restfraktionen >4 mm, som var tilbage efter sortering af 

genanvendelige materialer. De 4 behandlingstyper for restfraktionen var: deponering i Scenarie 1 

(S1), medforbrænding på et affaldsforbrændingsanlæg i Scenarie 2 (S2), pyrolyse i Scenarie 3 (S3), 

og medforbrænding i en cementovn i Scenarie 4 (S4). 

 

Livscyklusopgørelser 

Datasæt vedrørende SR sammensætning og behandlingsteknologier blev hovedsageligt sammensat 

baseret på data fra litteraturen (dvs. rapporter og videnskabelige artikler), og oplysninger fra 

partnerskabet for projektet, mens data om baggrundsprocesser (f.eks. energiproduktion, 

råvareproduktion) hovedsageligt blev hentet fra kommercielt tilgængelige LCA-databaser (f.eks. 

Ecoinvent og ELCD). Alle datasæt havde en grad af variation, som blev taget i betragtning med de 

udførte usikkerhedsanalyser. Andre vigtige antagelser omfattede: sorteringseffektiviteten på 

sorteringsanlægget, graden af oxidation af metallerne efter termisk behandling, kvaliteten af 

materialer sendt til genanvendelse, kvaliteten af de substituerede materialer, emissioner fra 

termiske processer og den marginale energiproduktion. Sidstnævnte var fokus for en 
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følsomhedsanalyse, hvor alternative marginale el-produktioner blev brugt til at teste validiteten af 

resultaterne i mulige fremtidige energi-scenarier. 

Resultater 

Håndteringen af SR i Scenarie 1 (deponi) viser at der er besparelser i kategorierne Global 

Opvarmning, Fotokemisk Ozondannelse og Terrestrisk Eutrofiering, hvilket hovedsagelig skyldes 

besparelser forbundet med genindvinding og genbrug af plast- og aluminiums-fraktionerne. For alle 

ikke-toksiske påvirkningskategorier og inden for en margin af usikkerhed, findes det at scenarier 

med øget energiudnyttelse (dvs. S2-forbrænding og S4-cementovne) for SR >4 mm giver signifikant 

bedre miljøresultater sammenlignet med det deponi-baserede basisscenarie (dvs. S1). Dette 

indikerer at øget energigenvinding er en oplagt mulighed for de ikke-toksiske kategorier.  

 

Resultaterne for pyrolyse scenariet (dvs. S3) er forbundet med betydelig usikkerhed, mest på grund 

af det faktum, at datasættet for SR pyrolyse inkluderer temmelig store intervaller af data. Dette 

peger på, at en klar konklusion ang. den miljømæssige bæredygtighed af pyrolyse som en 

behandlingsteknologi til SR ikke er mulig, med de tilgængelige data og viden omkring processen. 

Dette betyder, at der er behov for yderligere eksperimentelle undersøgelser, før det kan konkluderes 

om pyrolyse kan være en mulig behandlingsteknologi for SR. 

  

 
Figur A - Normaliserede potentielle ikke-toksiske miljøpåvirkninger fra behandling af 1 ton SR i 
de fire vurderede scenarier (PE = person ækvivalent), min-max intervaller er inkluderet i 
figuren. 

Resultaterne for de potentielle toksiske påvirkninger viser, at de fire analyserede scenarier har 

sammenlignelige profiler for påvirkningskategorierne Humantoksicitet (kræftfremkaldende), 

Partikler og Ioniserende Stråling. De tre scenarier, herunder termisk behandling af >4 mm 

fraktionen viser øgede potentielle påvirkninger for kategorierne Humantoksicitet (ikke-

kræftfremkaldende) og Økotoksicitet sammenlignet med de grundlæggende scenarier, som følge af 

stigninger i emissionerne til luften, navnlig As og Hg. Scenariet baseret på medforbrænding af >4 

mm SR i cementovn (dvs. S4) bidrager med potentielle påvirkninger til Humantoksicitet (ikke-

kræftfremkaldende) og Økotoksicitet, der er langt større end de øvrige scenarier især på grund 

emissioner til luften af Cu, Hg og Zn. De øgede påvirkninger skyldes mindre effektiv røggasrensning 

på cementfabrikken. Dette forværres yderligere af at disse stoffer er mere flygtige i cement 

processen grundet de højere temperaturer, hvilket gør at der er væsentlige højere udledninger. 
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Grundet den høje påvirkning fra metallerne, er der behov for forbehandling af SR for at producere 

en råvare til cementovne med en RDF-lignende sammensætning, med et lavere metalindhold. 

 

 
Figur B - Normaliserede potentielle toksiske miljøpåvirkninger fra behandling af 1 ton SR i de 
fire vurderede scenarier (PE = person ækvivalent), min-max intervaller er inkluderet i figuren. 

 
Figur C - Normaliserede potentielle påvirkninger for Global Opvarmning for de fire opstillede 
scenarier, opdelt efter de enkelte materialer og præsenteret per 1 ton materiale (PE = person 
ækvivalent). 

Hvis man i stedet ser på en enkelt fraktion (dvs. 1 ton af de enkelte materialefraktioner), viser de 

normaliserede potentielle påvirkninger i forhold til Global Opvarmning, at genanvendelse af 

magnetiske og ikke-magnetiske metaller giver de største besparelser, og det bør derfor være første 

prioritet at udsortere disse, ved planlægning af håndteringen af SR. Efter metallerne er plast et 

materiale som kan give betydelige besparelser, især hvis forskellige plastiktyper effektivt udsorteres 

og den mindst mulige mængde af krydskontaminering opnås. 
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Følsomhedsanalyse 

Følsomhedsanalyser blev brugt til at teste indflydelsen af den danske marginale elproduktion på 

resultaterne, herunder eventuelle fremtidige energikilder til elproduktion, såsom naturgas og vind, i 

stedet for kul. Resultaterne viser, at ændringen af den marginale elproduktion ikke påvirker 

rangordenen af scenarier i de fleste påvirkningskategorier, mens absolutte værdier for potentielle 

påvirkninger blev mindsket, især med hensyn til besparelserne fra genbrugsprocesser og 

energiudnyttelse. 

Den eneste undtagelse blev fundet til at være påvirkningerne i kategorien Global Opvarmning, hvor 

rangordenen af scenarier blev påvirket af den marginale el-teknologi. Når naturgas erstattes giver 

forbrænding tilsvarende miljømæssig besparelse i forhold til deponering, mens scenariet baseret på 

pyrolyse giver meget lav nettobesparelse. Hvis vindkraft er den marginale elektricitetskilde giver 

begge scenarier med forbrænding og pyrolyse dårligere resultater end scenariet med deponering. 

 

Konklusion 

Baseret på data og viden fra dette studie: 

 Ændring af den nuværende behandling af SR >4 mm således at mere genanvendes og mindre 

deponeres, giver fordele fra et miljømæssigt synspunkt og bør derfor prioriteres. 

 Sortering og genanvendelse af metaller, plast og glas er til gavn for miljøet og bør derfor 

fortsættes. Der bør være særligt fokus på at genanvende metaller, da dette giver de største 

miljømæssige fordele. 

 Forbrænding er miljømæssigt den bedste mulighed for behandling af SR > 4 mm. 

 Pyrolyse har dårligere energieffektivitet, men bedre nedstrøms genvinding af metaller (dvs. fra 

restprodukter) end forbrænding. Dog kunne en klar konklusion ikke drages, fordi resultaterne 

for pyrolyse var forbundet med væsentlig usikkerhed på grund af manglen på præcise data, der 

beskriver processen. Således bør enhver beslutning vedrørende gennemførelsen af pyrolyse til 

behandling af SR fraktion >4 mm blive understøttet af pilot-til-fuldskala test af processen, for 

at levere et bedre datagrundlag for processen. 

 Medforbrænding af >4 mm fraktionen i cementovne kan potentielt give en betydelig besparelse 

for påvirkningskategorien Global Opvarmning. Den nuværende sammensætning af fraktionen 

>4mm er dog ikke egnet, da med-forbrænding i cementovne kun kan gennemføres med en 

specielt designet fraktion. Denne mulighed betyder inkludering af forbehandling for at 

producere et råmateriale med en RDF-lignende sammensætning. Dette vil især omfatte en 

yderligere screening og sortering af metaller, for at reducere indholdet af tungmetaller i 

råmaterialet som sendes til cementovne. Udover tekniske grunde, vil det også resultere i en 

betydelig reduktion af emissioner til luft af tungmetaller især Cu og Zn som i høj grad er grund 

til høje potentielle påvirkninger rapporteret for nogle af påvirkningskategorierne. 

 Forbehandling af >4 mm SR bør overvejes for at reducere indholdet af tungmetaller (især Cu 

og Zn) i inputtet til termiske processer. 

 Resultaterne og anbefalingerne påvirkes ikke væsentligt af valget af den marginale 

energiteknologi, hvilket betyder at de stadig kan være gældende for et alternativt fremtidigt 

energisystem. 
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List of abbreviations 

AC Acidification  

AE Aquatic Ecotoxicity  

ARD  Abiotic Resource Depletion  

ASR Automotive shredder residues 

EU Eutrophication  

EQ Ecosystem Quality 

FEW  Freshwater Ecotoxicity 

GW Global Warming  

ILCD International Reference Life Cycle Data System 

HH Human Health 

HT  Human Toxicity  

LCA Life cycle assessment 

LCI Life cycle inventory 

LCIA Life cycle impact assessment 

LU Land Use  

MSW Municipal solid waste 

OD Ozone Depletion 

POF Photochemical Ozone Formation 

RES Resource Depletion 

SR Shredder residues 

TC Transfer coefficients 

TE Terrestrial Ecotoxicity 
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1. Introduction 

1.1 Background 

Shredder residue (SR) is the “residual fraction from mechanical shredding of metal containing 

scrap originating from different sources and processed at recycling stations or metal recovery 

businesses” (Hyks et al., 2014). Danish SR is typically a mixture of 20% automotive shredder 

residue (ASR) and 80% other residues originating from different sources (e.g. white goods, 

dismantled boats, industrial bulky waste, metal scrap). SR is a heterogeneous mixture of different 

materials, such as rubbers, plastics, glass, wood, dusts, fibres, metals, minerals and other residues 

that are difficult to separate. SR accounts for approximately 20% of the material input into sorting 

and recycling facilities, and because of the high content of some metals and different organic 

contaminants, it is classified as hazardous waste in Denmark (Hyks et al., 2014).  

 

While the majority of SR in Denmark (and also in Europe) is currently disposed of in hazardous 

waste landfills, alternative management solutions are being explored and implemented. This is a 

legislative- and market-driven process, owing to amongst other reasons: 

 Landfilling of hazardous waste in Denmark is subject to increasing taxation rates: the current 

tax of 160 DKK per tonne of landfilled SR will be increased to 475 DKK from January 1, 2015 

(Skatteministeriet, 2011). 

 EU Council Directive 2000/53/EC on ELV mandates the increasing reuse and recycling of SR: 

the current target of 85% will increase to 95% by 2015, where mechanical processes must 

encompass at least 85% of the SR and thermal processes may be used for up to 10% of the total 

amount (European Council, 2000). A target of >85% can be achieved by reusing components 

or recycling raw materials into new products. 

 Generally, increasing raw material and energy prices make recovery and recycling economically 

more practicable and interesting. 

1.2 Objectives of the project 

The purpose of this project is to perform a life-cycle assessment (LCA) of the management of 

Danish SR. The project deals with newly produced SR. The starting point for the management 

system is sorting and recycling, followed by energy recovery and finally the disposal of the 

generated residues. As the majority of SR is currently sent to landfill, where it is then stored, the 

goal of this LCA is to assess the possible treatment options and the environmental consequences 

from treating the residue and recovering materials.  

 

Considering the large variations in data, LCA results are calculated and presented by using ranges 

for input data values, thereby providing recommendations that include uncertainty. The assessed 

scenarios are developed by taking into consideration their technological feasibility within legislative 

constraints regarding the use and disposal of secondary materials as a result of the treatment. The 

results of the present LCA should provide a basis for deciding on the future management of SR, in 

order to ensure increased resource exploitation thereof. 

1.3 Existing LCA studies 

Table 1 provides an overview of existing LCA studies addressing the management of SR and ASR. 

The reviewed studies mainly cover Europe and focus almost entirely on ASR. Despite their limited 
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number, the available studies indicate that increasing the recovery of materials and energy provides 

significant environmental benefits compared to landfilling SR. However, the preferred technological 

solution varies between studies, depending on factors such as residue composition, local energy mix 

and technological capability. 

 Weaknesses and limitations in current existing studies (Table 1) can be summarised as follows: 

 No studies provide life cycle inventory (LCI) modelling based fully on the material fractions 

and physicochemical compositions of SR. 

 No studies provide a comprehensive and systematic sensitivity/uncertainty analysis testing the 

robustness of results while also highlighting the key parameters influencing the results. 

Table 1 - Overview of existing LCA studies on the management of SR and ASR. 

Geographical 
area 

Type Composition Scenarios 
included 

Impact 
categories 

Uncertainty 
analysis 

Results Source 

US ASR Material 
fraction + 
partial 
chemical 

- Landfill 

- Thermal recycling 

- Cement kiln 

- Material recycling 

AC,EU, 
FEW,GW,H
T,POF, TE 

None Scenario
s 2,3,4 
better 
than 
scenario 
1 

/A/ 

Italy ASR Material 
fraction 

- Landfill 

- Non-Ferrous 
recovery 

- Co-incineration 

- Plastic recovery +         
co-incineration 

- Chemical recycling 
(methanol) 

HH,EQ, 

RES 

Sensitivity + 
propagation 

Scenario 
4 and 5 
are best 

/B/ 

Belgium ASR Chemical - Landfill 

- Recycling + landfill 

- Incineration 

- Recycling + 
incineration  

LU 

GW 

HT 

None Recyclin
g + 
energy 
recovery 
provides 
largest 
benefits 

/C/ 

DK SR Material 
fraction 

- Landfill 

- Sieving + pyrolysis 

- Pyrolysis 

GW,OD, 
AC,TE,AE, 

Waste 

Scenario 
analysis on 
marginal 
energy 

Scenario 
2 best 

/D/ 

Italy ASR Material 
fraction 

- Landfill 

- Incineration 

- Mechanical 
recycling 

- Chemical recycling 
(methanol) 

HH,EQ, 

RES 

Monte Carlo Scenario 
3-4 best 

/E/ 

Portugal ASR Material 
fraction 

- Landfill 

- Incineration 

- Additional 
dismantling + SRF + 
cement kiln 

ARD,GW,P
OF,AC,EU 

Parameter 
sensitivity 

Scenario 
3 best 

/F/ 

Midpoint  AC: Acidification; AE: Aquatic Ecotoxicity; ARD: Abiotic Resource Depletion; EU: Eutrophication; FEW: 
Freshwater Ecotoxicity; GW: Global Warming; HT: Human Toxicity; LU: Land Use; OD: Ozone Depletion; POF: Photochemical 
Ozone Formation; TE: Terrestrial Ecotoxicity. 

Endpoint  HH: Human Health; EQ: Ecosystem Quality; RES: Resource Depletion 

/A/: Boughton et al. (2006); /B/: Ciacci et al. (2010); /C/: Vermeulen et al. (2010); /D/: Høstgaard et al. 2012; /E/: Passarini et 
al. (2012); /F/: Fonseca et al. (2013). 
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2. Scope and design of the 
LCA 

2.1 General principles 

The life cycle assessment (LCA) in this project is performed as a ‘consequential LCA’, whereby 

environmental impacts are calculated in relation to the management of SR. In accordance with the 

consequential approach, the assessment makes use of system expansion to credit for any material 

production avoided and for energy in the background system. 

 

The LCA is conducted under the principle of ‘best practice’, regarding the choice of LCIA methods 

and environmental impact categories and the assessment of data quality. The LCA is performed 

according to ISO standards 14040 and 14044. The selection of LCIA methods and environmental 

impact categories follows recommendations stipulated in the ILCD Handbook ‘Recommendations 

for Life Cycle Impact Assessment in the European Context’ (JRC, 2011). 

2.2 The functional unit 

The functional unit defines the service provided by the system assessed by the LCA study, thus 

ensuring that all the assessed waste management scenarios are comparable, meaning that they 

provide an equivalent service. The functional unit of the present LCA is defined as: 

 

Treatment of 1 ton of newly produced shredder residues (SR), including treatment, recycling, 

incineration/pyrolysis and final disposal of any residues from the treatment process. Composition 

of SR under assessment is specified in Chapter 3.2, while inventory data for individual treatment 

processes are presented in Chapter 4.1. 

 

The time horizon for the assessment is assumed to be 100 years, while the geographical scope of the 

SR treatment processes is assumed as being in Denmark and the geographical origins of individual 

background processes are specified in Appendix 1.  

2.3 System boundaries 

Figure 1 presents the system boundary of the LCA and the overall material flow. SR enters the 

system boundaries burden-free, meaning that upstream processes and impacts related to the 

manufacturing of products becoming SR are not included. In all scenarios, SR is sorted to recover 

recyclable materials, while the remaining material is sent for energy recovery (incineration, 

pyrolysis or co-combustion in a cement kiln) and/or deposition after biological stabilisation. 

Substitutions for virgin materials and energy are shown in the dashed boxes in Figure 1. 
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Figure 1 - System boundaries for an LCA of newly produced shredder residues. The substitutions 
for materials and energy are shown by the dotted boxes and arrows. 

2.4 Allocation/system expansion 

According to recommendations for state-of-the-art LCAs (JRC, 2011), system boundary expansion 

was applied within the current project, in order to ensure a consistent approach and a holistic 

perspective to support decision making. In practice, this has two consequences: 1) cascading effects 

(i.e. lost opportunities) on other systems, owing to the decision under assessment, are included 

within the system boundaries, and 2) substitution is used instead of allocation whenever a multi-

output process is modelled, meaning that the waste system was credited for avoiding emissions that 

would otherwise have occurred in the production of the substituted products. The latter is also 

needed to ensure equivalency amongst the assessed scenarios. 

2.5 Environmental impact categories, LCIA methods and interpretation 

of the results 

The present LCA makes use of environmental impact categories and LCIA methods described in the 

ILCD Handbook (JRC, 2011). In addition, the impact category Depletion of Abiotic Resources (fossil 

and elements) from the CML method is included for both fossil and elemental resources 

independently, whereas in the guidelines an aggregated impact is used. Other included categories 

are Human Toxicity and Eco Toxicity in the form of USEtox, which was also recommended in the 

ILCD Handbook (JRC, 2011). Particulate substances that affect breathing, however, are not 

included in the USEtox category for Human Toxicity, so they are therefore modelled according to 

the UPFM model (Humbert , 2009). An overview of the selected environmental impact categories is 

shown in Table 2.  

 

It should be noted that USEtox is subject to some uncertainty, which should be considered when 

interpreting the results (an update to USEtox version 1.1 is in preparation, especially with an 

improved modelling of the speciation of the metals).  

 

In this LCA, the potential environmental impacts will be converted for each of the impact categories 

into a single entity in the form of a person equivalent (PE), with the actual load divided by the 

average annual load produced by one person – referred to as ‘normalisation’. Table 2 also shows the 

applied normalisation conversion equivalents for the impact categories used herein, and these 

normalisation references are based on Blok et al. (2013). 

 

 

 

 

 
Table 2 – Environmental impact categories and normalisation references used in the present 
project. 
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Impact category Method Abbreviation Normalisation 
reference 

Unit 

Global Warming IPCC 2007 GWP100 8100 kg CO2-eq./PE/year 

Stratospheric Ozone 
Depletion 

WMO 1999 ODP 4.14*10-2 kg CFC11-
eq./PE/year 

Human Toxicity, 
Cancer Effect1 

USEtox HT-C 5.42*10-5 CTUh /PE/year 

Human Toxicity, 
non-Cancer Effect1 

USEtox HT-NC 1.10*10-3 CTUh/PE/year 

Particulate Matter Humbert PM 2.76 kg PM 2.5/PE/year 

Ionizing Radiation, 
Human Health 

Dreicer  1.33*103 kBq U-235 air-
eq/person 

Photochemical 
Ozone Formation 

ReCiPe midpoint  56.7 kg-
NMVOCeq/person 

Terrestrial 
Acidification 

Accumulated Exceedance AP 49.6 AE/PE/year 

Terrestrial 
Eutrophication 

Accumulated Exceedance TEP 115 AE/PE/year 

Freshwater 
Eutrophication 

ReCiPe midpoint FEP 0.62 kg P-eq./PE/year 

Marine 
Eutrophication 

ReCiPe midpoint FEP 9.38 kg N-eq./PE/year 

Freshwater 
Ecotoxicity2 

USEtox ET 6.465*10-5 CTUe/PE/year 

Depletion of Abiotic 
Resources-Fossil 

CML ADP-F 6.24*10-4 MJ/PE/year 

Depletion of Abiotic 
Resources-Elements 

CML ADP-E 3.43*10-2 kg Sb-eq./PE/year 

1 CTUh comparative toxic unit for humans. 
2 CTUe - comparative toxic unit for ecosystem. 

2.6 The EASETECH Life Cycle Assessment Tool  

Life cycle modelling was facilitated with the EASETECH waste LCA model (Clavreul et al., 2014), 

developed by the Technical University of Denmark. EASETECH allows for estimating mass flows, 

resource consumption and emissions from the waste system under assessment, based on a detailed 

physicochemical composition of material fractions in the waste and a number of user-defined 

process parameters. EASETECH includes specific modules for modelling source separation, 

the collection and transportation of waste, material recycling facilities, incineration, composting, 

biogas, combined biogas and composting plants, landfills, the use of stabilised organic waste in 

agriculture, the recycling of materials and energy and materials production. 

 

The EASETECH model contains ready-to-use data for a number of selected processes and 

technologies, while the inventory modelling of specific plants can be performed and its results 

stored in the model. Furthermore, scenarios with plural routing options can be established for any 

kind of waste system, starting with waste generation and ending with final disposal in a long-term 

repository, the industrial recycling of materials, the spreading on agricultural land of bio-treated 

organic waste, use in power plants or material utilisation. Owing to the market effects induced by 

material recycling, energy recovery or material utilisation, the waste system can be credited for 

resource and environmental savings achieved through the corresponding avoided production of 

virgin materials. EASETECH also contains databases for a number of key processes, such as 

transport, electricity and heat production, and inventory data can be imported from commercial 

databases. 
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2.6.1 Uncertainty calculations 

Uncertainty calculations are carried out via Monte Carlo simulation. In EASETECH, this is done by 

specifying distributions for each parameter for which the uncertainty is to be assessed. The model 

accepts a mixture of normal, lognormal, triangular and uniform distributions. After having specified 

all the parameter distributions for which the Monte Carlo analysis is to be carried out, the user 

needs to specify how many random variables need to be used within each distribution. In this report 

we used 10,000 variables.  

2.7 Data needs 

2.7.1 Material composition 

Information regarding the material fraction and physicochemical composition of SR was retrieved 

from Hansen et al. (2011a) and Høstgaard et al. (2012). As shown in Table 16 and Table 17 of 

Appendix 2, a range of other studies providing compositional data were available, but they could 

not be utilised in the present context because they dealt with either ASR (which is only 20% of 

Danish SR) or SR excavated from landfills (e.g. Hansen et al., 2012; Ahmed et al., 2014). A detailed 

overview of the physicochemical composition of SR used in LCA modelling is provided in Chapter 

3.2 and Appendix 2.  

2.7.2 Treatment of shredder residues 

For all SR treatment processes, specific inventory datasets were established, as presented in detail 

in Chapter 4.1. For the remaining background processes involved in the LCA, datasets from 

recognised LCA databases were used. A comprehensive list of the datasets used in the present study 

is provided in Chapter 4.3. 

2.8 Non-quantitative assessments 

In the present study, potential impact weighting is not performed, as it is not required by the ISO 

standard. A qualitative evaluation of the uncertainty related to characterisation factors and methods 

is mentioned in Chapter 5, with particular emphasis placed on separately discussing non-toxic and 

toxic impact categories during the interpretation of results.  

2.9 Limitations 

The present LCA study is performed in accordance with ISO standards 14040 and 14044, and it is 

generally meant to be used as a basis for decision-making. In this context, it should be emphasised 

that the LCA should not be used as the only tool for decision support. The results of the present 

project are valid as long as the socio-demographic and technological conditions of the SR 

management system (described later) persist.  

 

2.10 Requirements for data quality 

To evaluate the quality of external processes included in the LCA, the methodology developed by 

Weidema & Wesnæs (1996) was used. This method uses quality indicator values for five indicator 

categories to assess the quality of data. The indicator categories include credibility, completeness, 

temporal correlation, geographical correlation and technological correlation. For individual 

categories, indicator values are assigned by comparing the quality of process data with data quality 

goals set according to the goal and the scope of the project. A value is assigned on a scale of 1 to 5, 

where 1 indicates full documentation and compliance, and 5 indicates a lack of data/compliance 

with the required process. The average of the indicator categories is then calculated. Whenever 

possible, this project makes use only of processes which have an average indicator value less than 3. 

A definition of the indicators, and an explanation of the individual indicator categories, is available 

in the documentation prepared for the Ecoinvent database (Frischknecht et al., 2007), initially 

based on Weidema & Wesnæs (1996). 
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2.11 Process regarding critical review 

The report was reviewed externally by LCA experts from the Danish Technological Institute. The 

review report is available in Appendix 9. All comments from the reviewers have been implemented 

in this version of the report. 

2.12 Report format 

The format of the report follows the recommendations provided by the ISO 14040 and 14044 

standards. 

2.13 Timeframe 

Data on the composition of newly produced SR refer to the years 2011-2012. The composition of SR 

is expected to change over the years; for example, the use of composite plastic materials is 

increasing in the automotive industry (Koronis et al., 2013). The validity of SR composition data 

will thus have to be checked when developing future scenarios. Inventory data for processing 

systems refer to current average technologies; hence, the results of the current study are only valid 

as long as there are no substantial changes in the design of technologies and background systems. 

The latter applies especially to marginal technology for energy production. As Denmark is in a 

transition phase and heading towards a fossil-free energy system, the relevance of energy recovery 

from SR may change significantly in the future (e.g. in ten years).  
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3. Scenarios and composition 
of shredder residues 

3.1 Scenarios  

The scenarios included herein are illustrated in Figure 2 to Figure 5. The main difference between 

the individual scenarios is the technology (i.e. landfilling, incineration, pyrolysis and co-combustion 

in a cement kiln) employed for treating >4 mm residue remaining after sorting recyclable materials. 

All scenarios include the sorting of recyclables and the landfilling of fine residues <4 mm, which are 

not suitable for thermal treatment because of their high content of heavy metals. 

 

Scenario 1 (S1) represents the baseline current situation for the management of SR (Figure 2). In 

this scenario, recyclables (i.e. glass, plastics and metals) are sorted and recovered from SR, while 

the remaining residues are landfilled. Recyclables are sent to recycling facilities to produce 

secondary glass, plastic and metal materials.  

 

To illustrate the effect of treating the remaining residues biologically before landfilling, this 

technology step has been included in all scenarios, despite the fact that this treatment method is 

currently not applied in Denmark. More details are found in Møller et al. (2014), where it is shown 

that biological treatment has almost no effect on the results of the LCA. 

 

 

 
Figure 2 – Scenario 1: landfilling after sorting of recyclables. 

Scenario 2 (S2) includes the recovery of recyclables (i.e. glass, plastics and metals) from SR (Figure 

3). The remaining residues are then screened to separate particle fractions >4 mm, which are 

routed to incineration, and a fraction <4 mm, which is sent for biological treatment and then to 

landfill. Recyclables are sent to recycling facilities for the production of secondary glass, plastic and 

metal materials. Bottom ashes from the incineration process are treated to enable the further 

recovery of metals, and then they are used for road construction as sub-base materials. Fly ashes 

from the air-pollution-control (APC) system of the incineration plant are landfilled. 

 

Scenario 3 (S3) includes the recovery of recyclables (i.e. glass, plastics and metals) from SR (Figure 

4). The remaining residues are then screened to separate a particle fraction >4 mm, which is routed 

to pyrolysis, and a fraction <4 mm, sent for biological treatment and then to landfill. Metals are 

recovered from pyrolysis char, which is then used together with pyrolysis oil and gas as a fuel for 

energy production in incineration plants. Recyclables are sent to recycling facilities for the 
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production of secondary glass, plastic and metal materials. Bottom ashes from combustion of 

pyrolysis products (Char etc.) presumably are used for road construction as sub-base materials. Fly 

ashes from the APC system are landfilled. 
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Figure 3 – Scenario 2: incineration of >4 mm residues after sorting of recyclables. 
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Figure 4 – Scenario 3: pyrolysis of >4 mm residues after sorting of recyclables. 

 

Scenario 4 (S4) includes the recovery of recyclables (i.e. glass, plastics and metals) from SR (Figure 

5). The remaining residues are then screened to separate a particle fraction >4 mm, which is used as 

a co-fuel in cement kilns, and a fraction <4 mm, sent for biological treatment and then to landfill. 

While cement kilns can generally run using different fuels (i.e. coal, petcoke, natural gas, oil), 

almost all European and Danish plants make use of coal (Daugaard, 2014). When coal is substituted 

with an alternative fuel such as waste, 8% additional energy is needed in the process. In fact, as 

waste has a high content of chlorine compared with coal, some of the off gas needs to be drained 

from the kiln. This results in a loss of energy in the system, which needs to be compensated for 

through the additional input of fuel (Daugaard, 2014). For LCA modelling, it was thus assumed that 

1 MJ of SR substitutes 0.926 MJ of coal (or 1.08 MJ of SR substitutes 1 MJ of coal). Inert materials 

in SR end up in the final cement product, while fly ashes from the APC system are landfilled.  
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Figure 5 – Scenario 4: cement kiln of >4 mm residues after sorting of recyclables. 

The report does not include an analysis of possible transport distances, as there is no knowledge of 

where the material will be treated, while, at least for the fractions of recyclable materials, 

transportation would be the same in all scenarios. In addition, it is assumed that emissions from 

transport will only play a very minor role with regards to environmental impacts (Merrild et al., 

2012). 

3.2 Composition of shredder residues 

Waste is generally a heterogenic material, but some waste – such as SR – varies significantly over 

days and even hours. The composition of SR depends on material received at the shredder 

companies and the sorting performed, which in turn depends on the market price of waste materials 

and recyclables. Intervals for the content of individual materials were thus used in this assessment, 

in order to cover the heterogeneity of SR. 

 

The material fraction composition used in the LCI modelling is presented in Table 3, based on data 

from Hansen et al. (2011a) and Høstgaard et al. (2012). These data are in line with recent results 

from two sampling/sorting campaigns conducted by Stena Recycling in April 2014 (undisclosed 

because of confidentiality reasons). Details about dataset creation and the uncertainty assessment 

are presented in Appendix 2. 

 

The physicochemical composition of <4mm and >4mm fractions of SR used in the modelling is 

presented in Table 4. These datasets are based on data from Hansen et al. (2011a) and Høstgaard et 

al. (2012) and are presented as lognormal distributions (additional details in Appendix 2). 
Table 3 – Material fraction composition used for LCI modelling SR. 

Fraction Average (%) St. Dev. 

Ferrous metal 0.93 0.53 

Non-ferrous metal 3.22 0.99 

Tin can 0.67 0.21 

Plastic 11.88 2.86 

Rubber 6.89 2.10 

Glass 0.03 0.01 

>4mm 30.83 3.72 

<4mm 45.54 3.15 

Total 100  

 
Table 4 – Physicochemical composition of <4mm and >4mm fractions of SR used in the LCI 
modelling (based on Hansen et al. (2011a) and Høstgaard et al. (2012)). All data are provided as 
lognormal distributions.  
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 Parameter Unit Fine <4mm > 4mm 

   median deviation median deviation 

TS* % ww 89.4 3.25 89.4 3.25 

Ash % TS 80.9 21.6 40.4 21.4 

LHV MJ/kgTS 0.33 4.12 17.1 6.33 

C % TS 5.09 9.26 35.4 6.89 

H % TS 2.60 1.90 4.96 1.61 

N % TS 0.49 0.16 0.83 0.23 

Si mg/kg TS 103000 66300 50500 38100 

Al mg/kg TS 28700 17300 16600 15500 

Ca mg/kg TS 50000 41500 33100 14900 

Fe mg/kg TS 192000 88200 73700 44500 

K mg/kg TS 5340 4610 3000 1040 

Mg mg/kg TS 9210 5670 7110 1540 

Mn mg/kg TS 2070 1110 1040 506 

Na mg/kg TS 11600 6290 6860 3030 

P mg/kg TS 1440 2780 1090 767 

Ti mg/kg TS 5470 4160 4900 4220 

As mg/kg TS 88.4 286 49.2 107 

Ba mg/kg TS 3170 1560 2540 2250 

Be mg/kg TS 0.644 0.187 0.615  

Cd mg/kg TS 25.2 41.0 9.73  

Co mg/kg TS 41.1 38.8 35.8  

Cr mg/kg TS 979 1950 391 272 

Cu mg/kg TS 3790 13200 7370 21700 

Hg mg/kg TS 1.51 2.33 2.61  

Mo mg/kg TS 99.0 149 39.6  

Nb mg/kg TS 4.47 2.00   

Ni mg/kg TS 585 490 364 510 

Pb mg/kg TS 2970 3360 2600 4790 

S mg/kg TS 5160 7570 3940 4890 

Sb mg/kg TS 377 923 336 271 

Sc mg/kg TS 0.949 0.274 1.20  

Sn mg/kg TS 419 488 208 266 

Sr mg/kg TS 408 453 205 218 

V mg/kg TS 89.1 34.6 39.1  

W mg/kg TS 189 94.5 179  

Y mg/kg TS 9.47 7.63 4.49  

Zn mg/kg TS 37200 49700 24300 14600 

Zr mg/kg TS 553 366 244 142 

Br mg/kg TS 510 2670 436 1030 
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Cl mg/kg TS 4420 4890 10200 11900 

I mg/kg TS 2.78 2.60 1.88  

Li (*)  0.0497 0.305   

* Based on data from Nieminen et al. (2006) 
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4. Life cycle inventories 

4.1 Inventories for treatment processes 

4.1.1 LCI of SR sorting  

SR sorting is modelled based on data for landfilled SR retrieved from Møller et al. (2014), and then 

modified to account for the specific characteristics of newly produced SR. In fact, in comparison 

with the landfilled SR in Møller et al. (2014), the amounts of metals in the newly produced SR are 

considerably lower. Furthermore, the majority of the copper is supposedly contained in cables and 

thus cannot be sorted out without prior processing. It is thus assumed that sorting is performed on 

the following materials: >4 mm fraction for further processing, ferrous metals, non-ferrous 

(aluminium) metals, plastics and glass. The different steps are presented in Figure 6, while the 

amount of materials sent to further treatment is shown in Figure 7.  

 

 
Figure 6 – Overview of the SR sorting process. 

 

 
Figure 7 – Overview of material flows through the sorting facility.  



28 Life cycle assessment of shredder residue management 

 

The screen is assumed to sort 100% of the >4 mm fraction that will go on to the further processing 

steps explained in Chapter 3. As additional data on the efficiency of the process for sorting newly 

produced SR were not available, the dataset is thus based on information retrieved from Møller et 

al. (2014). As newly produced SR has a lower content of metals compared with disposed SR, average 

sorting efficiency is assumed to be similar to what was used in the sensitivity analysis in Møller et 

al. (2014). These average values are then combined with the higher values and a lower sorting 

efficiency of 50% to form a triangular distribution for sorting the different materials, as presented in 

Table 5. Data for energy consumption in the individual processing units are based on Møller et al. 

(2014) and shown in Table 6. The sorted materials are then sent for remanufacturing, where 

additional sorting to remove impurities can take place. 

 
Table 5 – Efficiencies of individual processing units in sorting SR, expressed as a triangular 
distribution. 

Process Unit Min Mean Max 

Magnetic separator % input 50 66 94 

Eddy current separator % input 50 66 92 

Plastic seperation1 % input 16 48 80 

Glass seperation2 % input 20 40 60 
1 Based on 80% sorting from Hansen et al. (2012), and an assumption of 20-60-100% of a quality to be recycled 
2 Based on 40% sorting from Hansen et al. (2012), and an assumption of +/-50% range 

 
Table 6 – Input of energy to individual processing units in sorting SR. 

Process Input Unit Amount 

4mm Screen Electricity kWh/kg throughput 0.0225 

Magnetic separator Electricity kWh/kg throughput 0.0006 

Eddy Current separator Electricity kWh/kg throughput 0.005 

Plastic and glass separation Electricity kWh/kg throughput 0.005 

4.1.2 LCI of SR combustion at a waste incinerator plant 

Scenario 2 includes SR combustion at a waste incineration plant. In EASETECH, waste incineration 

plants are modelled by mapping emissions into the air of individual compounds and/or their 

transfer into other waste products. Individual compounds contained in waste are distributed into 

the air and as solid outputs using transfer coefficients (TCs). Air emissions from waste incineration 

are further divided into two types: input-specific emissions and process-specific. The former are 

proportional to the concentration of individual compounds in the waste and are thus modelled 

using TCs. This type of emission includes, for example, heavy metals and CO2. Process-specific 

emissions are largely independent of the composition of the waste, and they are solely a function of 

the plant’s operational characteristics. Examples of process-specific emissions include NOx, SO2 

and dioxin emissions. In addition, the LCI for waste incineration includes internal energy 

consumption, and the consumption of auxiliaries is accounted for, together with the substitution 

value of the energy produced. In the present study, SR incineration is modelled similarly to how 

Møller et al. (2014) modelled excavated SR, and thus it is based on the inventory of a generic 

Danish waste incinerator described in Jacobsen et al. (2013).  

 

4.1.2.1 Technology description 

The incineration plant is modelled on the basis of Jacobsen et al. (2013), who provided a 

comprehensive inventory dataset for a state-of-the-art waste incineration plant in Denmark. This 

inventory is based on data collected from state-of-the-art Line 5 of Vestforbrænding I/S for 2011. 

Line 5 is equipped with a grate-type furnace, and its flue gas cleaning system includes wet scrubbing 

for acid gas removal, an SNCR deNOx system and an activated carbon filter for dioxin and Hg 

removal. The dataset is based on both process- and input-specific emissions, depending on whether 

the emissions are mostly controlled by the plant operation or are mainly related to the content of 

specific compounds in the waste input. Leaching from bottom ash (i.e. slag), used for road 
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construction, is estimated using results from batch leaching test EN 12457-1, performed at L/S = 2 

l/kg. The recipient of bottom ash leachate is supposed to be freshwater. 

 

Energy contained in waste is recovered and used to produce electricity and hot water. The net 

energy recovery efficiencies are 22% for electricity generation and 73% for heat production, 

according to data reported in ‘Technology Data for Energy Plants’ (Energistyrelsen, 2012). The 

generated electricity is delivered to the grid, while hot water is delivered to a district heating 

network. Electricity is assumed to substitute for coal-based marginal electricity production, while 

heat is assumed to substitute for average Danish district heating, as explained in Chapter 4.2. 

 

Bottom ash is treated to recover aluminium and iron. The total recovery depends on the efficiency 

of the sorting process and the degree of oxidation of the separated metal, where the latter is 

determined by the material thickness, as oxidation decreases with increasing thickness (Malmgren-

Hansen et al., 2002). Because of the lack of specific data for SR, data for metal recovery from 

bottom ash generated during the combustion of general waste in a Danish incinerator were used. 

The recovery of iron was thus assumed to have an efficiency of 85% (Allegrini et al., 2014). The 

oxidation grade for >4 mm residues was assumed at 7.5%, as reported by Møller et al. (2014), and 

the recovery of non-oxidised aluminium was assumed to have an efficiency of 49%, calculated on 

the total input of Al into the combustion process, as reported in Biganzoli & Grosso (2013) and 

explained in Møller et al. (2014). 

 

4.1.2.2 Inventory dataset 

The inventory dataset for the combustion of SR at a waste incinerator in Denmark is presented in 

Table 7. As mentioned above, basic inventory data were taken from Jakobsen et al. (2013). This 

assumption is considered valid upon the condition that ASR is co-combusted with regular 

municipal solid waste up to a share of 12-14% and is made based on the following considerations: 

 Astrup et al. (2011a) tested co-combustion by blending 14% ASR into municipal solid waste and 

reported that despite the content of individual compounds significantly increasing with the 

introduction of ASR into the feedstock blend (compared with municipal residual waste), 

emissions from the stack were not affected. In some cases, TCs into the air seemed eventually 

to decrease with the addition of ASR, possibly because a significant share of the metals is likely 

to be embedded in a non-combustible matrix and is thus not volatilised in the flue gas phase. 

This may suggest that TCs for ASR are somehow lower than for residual waste, and it can hence 

be conservatively assumed that TCs for ASR are equal to regular waste. While results are only 

available for As, Cd, Cr, Pb and SB, similar behaviour for other compounds is also assumed. 

 Redin et al. (2001), Astrup et al. (2011a), Nedenskov (2011) and Vermeulen et al. (2012) 

reported regular functioning of the flue gas cleaning system and rather constant emissions 

during the co-combustion of ASR with municipal solid waste. Redin et al. (2001) tested 20% 

ASR, Astrup et al. (2011a) performed a co-combustion test with 14% ASR on a mass basis, while 

Nedenskov (2011) tested a mix with 12.4% ASR and Vermeulen et al. (2012) a mix with 25% 

and 39% ASR. 

 The Danish EPA gave to I/S Reno-Nord environmental approval for the co-combustion of ASR 

with municipal solid waste up to 12.5% of mass (Seerup, 2012). In the approval, the Danish 

EPA assessed that the flue gas cleaning system at I/S Reno-Nord would ensure that the 

emission of heavy metals into the air would not rise, or at least not rise significantly, as a 

consequence of ASR co-combustion. 
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Table 7 – Inventory dataset for the combustion of 1 ton of SR at a waste incinerator. 

Type Parameter Unit Jakobsen et al. 
(2013) 

Deviation 

Input material SR Ton ww 1  

NaOH kg/ton ww 0.024  

Activated carbon kg/ton ww 1.04  

CaCO3 kg/ton ww 5.67  

NH3 kg/ton ww 1.53  

Water kg/ton ww 397  

Ca(OH)2 kg/ton ww 0.34  

Polymer kg/ton ww 0.0006  

HCl kg/ton ww 0.0056  

TMT kg/ton ww 0.395  

Output Electricity % LHV, net 22  

Heat % LHV, net 73  

Process-specific air emission HCl kg/ton ww 0.0053  

CO kg/ton ww 0.033  

NOx kg/ton ww 0.849  

HF kg/ton ww 0.00039  

Dioxin kg/ton ww 1.8*10-11  

PM kg/ton ww 0.003  

SO2 kg/ton ww 0.00291  

Input-specific air emissions 

(% of content in waste input) 

Cl % input 0.1073 0.3036 

S % input 0.099 0.2801 

As % input 0.0121 0.0366 

Cd % input 0.0064 0.0174 

Cr % input 0.0394 0.1336 

Cu % input 0.00261 0.0092 

Hg % input 0.7476 2.0014 

Ni % input 0.0329 0.1007 

Pb % input 0.00081 0.0023 

Sb % input 0.0119 0.0337 

Zn* % input 0.0717 0.0994 

Bottom ash composition  

(% of content in waste input) 

Cl % input 5.3 2.81 

S % input 23.99 12.70 

As % input 40.62 21.50 

Cd % input 11.83 6.26 

Cr % input 83.15 44.01 

Cu % input 92.63 49.03 

Fe % input 96.92 51.30 

Hg % input 2.38 1.26 

Mo % input 96.61 51.14 

Ni % input 87.32 46.22 

Pb % input 48.47 25.65 

Sb % input 38.91 20.59 

Se % input 22.38 11.85 

Zn % input 51.76 27.40 

Fly ash composition  

(% of content in waste input) 

Cl % input 32.13 13.69 

S % input 60.91 25.95 

As % input 58.92 25.10 

Cd % input 88.13 37.55 

Cr % input 16.77 7.15 

Cu % input 7.35 3.13 

Fe % input 3.06 1.30 

Hg % input 96.25 41.01 

Mo % input 2.54 1.08 

Ni % input 12.56 5.35 

Pb % input 51.29 21.85 

Sb % input 59.84 25.50 
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Se % input 76.73 32.69 

Zn % input 48.18 20.53 

* Calculated based on Vermeulen et al. (2012) 

 

 Vermeulen et al. (2012) investigated the incineration of 100% ASR in a rotary kiln plant, 

reporting process-specific emissions very similar to Jakobsen et al. (2013). With regards to 

input-specific emissions, Vermeulen et al. (2012) reported slightly higher TCs for some of the 

assessed compounds. The small differences (e.g. Cd and Cr) may be associated with the fact 

that while Jakobsen et al. (2013) covered a grate furnace incineration plant, Vermeulen et al. 

(2012) performed a test on a rotary kiln process used for incinerating hazardous waste, and 

thus running on higher temperature. 

 Nedenskov (2013) and Hyks & Astrup (2009) reported that the quality of solid residues 

originating from the co-combustion of SR with municipal solid waste (MSW) did not 

significantly differ when compared with bottom ash from incinerating 100% residual municipal 

solid waste.  

To complement the data taken from Jakobsen et al. (2013), uncertainty associated with individual 
parameters was estimated (see Table 7, details in Appendix 3): 

 For air emissions, using data from Vermeulen et al. (2012); 

 For the composition of solid residues, using data from Mancini et al. (2014) and 

 For leaching from bottom ash, using data from Nedenskov (2013). 

4.1.3 LCI of pyrolysis of SR 

Pyrolysis is an endothermic process during which the feedstock is heated under anaerobic 

conditions so that carbonaceous compounds therein are converted into energy-rich pyrolysis 

products such as oil, gas (mainly CO and H2) and coke. As pyrolysis occurs in an oxygen-free 

environment and at a lower temperature than combustion (from 400°C to 900°C), metals 

eventually present in the feedstock are not oxidised. A detailed description of SR pyrolysis is 

provided by Høstgaard et al. (2012) based on small-scale laboratory tests.  

 

Since the pyrolysis process is endothermic, its operation requires the input of energy. This energy is 

typically obtained by using the pyrolysis gas for heating the reactor, while oil and coke can be 

employed for energy production to be exported. Pyrolysis gas, oil and coke can – in principle – be 

used as fuels in a number of technologies, while in reality their application is limited because they 

carry undesirable levels of e.g. heavy metals (Høstgaard et al., 2012). The present study thus 

assumes that the pyrolysis products are utilised in a waste incineration plant, as its feasibility is 

reported in Høstgaard et al. (2012). The inventory for the incineration of pyrolysis products is 

modelled according to the dataset presented in Chapter 4.1.2. 

 

4.1.3.1 Technology description 

An average pyrolysis process for treating SR was obtained based on physicochemical compositions 

of SR input and pyrolysis products (i.e. char, oil and gas) retrieved from a number of literature 

studies. Data were reconciled to balance mass, energy and substance flows simultaneously while 

estimating the uncertainty of the system. The mass and energy balances of an average pyrolysis 

process for the treatment of SR are shown in Figure 8 and Figure 9, while additional charts for 

individual compounds can be found in Appendix 4, together with a detailed description of the 

reconciliation process. The recovery of metals from char is possible because the organic part of the 

char is typically porous and can be screened out rather easily (Møller et al., 2014). While forcing 

data reconciliation based on materials compositions (i.e. SR input, char, oil and gas), in the mass 

balance calculation, sorting efficiency was assumed at between 80% and 100%. 

 

Figure 8 and Figure 9 indicate that mass and energy recoveries have rather different patterns, with 

char being the main material output, while oil carries the largest energy flow. In addition, it is 

evident that all flows are associated with significant uncertainty, possibly because the displayed 
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average process was built on a rather large set of data, originating from different test conditions. 

This is indeed a consequence of limited data availability and lack of full-scale experiments on 

representative Danish SR.  

 
Figure 8 – Mass balance for the pyrolysis of 1 ton of SR. 

 

 
Figure 9 – Reconciled distribution of energy during the pyrolysis of 1 ton of SR. 

4.1.3.2 Inventory dataset 

Mass, energy and substance reconciliation allowed for calculating process TCs for individual 

outputs. An overview of the inventory datasets used in the LCA modelling is presented in Table 8, 

together with the uncertainty associated with individual parameters. A detailed description of the 

inventory is provided in Appendix 4. 

4.1.4 LCI of disposal of SR in landfill 

The inventory for landfilling SR was developed similarly to how it was applied by Møller et al. 

(2014). Gas emissions from the depositing of SR into landfill sites were estimated based on 

experimental results reported in Scheutz et al. (2010a, 2010b, and 2011). Emissions related to 

leachate production were estimated based on the modelling of experimental results reported in 

Hansen et al. (2011b) and the estimation of uncertainty was based on data from Hansen et al. 

(2011a). An overview of the inventory dataset is provided in Table 9, while additional details about 

the inventory creation are provided in Appendix 5. In addition, electricity consumption of 97 

kWh/tonSR was considered for leachate treatment at a wastewater treatment plant (Møller et al., 

2014). 
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Table 8 – Inventory dataset for the pyrolysis of SR. 

Type Parameter Unit Mean St. Dev. 

Input SR ton 1  

Electricity MJ/ton ww 248  

Pyrolysis oil GJ/ton ww 0.29  

Pyrolysis gas GJ/ton ww 0.21  

Output Char % LHV, net 25.0 30.1 

Oil % LHV, net 38.9 18.3 

Gas % LHV, net 22.7 20.1 

Ferrous metals kg/ton ww 

(% input) 

25.9 

(37.0) 

9.31 

(12.7) 

Non-Ferrous metals kg/ton ww 

(% input) 

25.7 

(8.24) 

11.3 

(6.18) 

Unsorted metals kg/ton ww 

(% input) 

12.9 

(6.73) 

9.56 

(7.70) 

Transfer to char 

(% of content in waste 
input) 

Al % input 17.9 10.1 

C % input 29.2 10.5 

Ca % input 66.1 16.8 

Cd % input 90.3 109 

Cl % input 71.1 81.4 

Cr % input 26.0 30.4 

Cu % input 23.9 16.2 

Fe % input 47.4 14.2 

Hg % input 0.75 0.71 

Mn % input 61.3 19.1 

N % input 39.8 17.6 

Ni % input 32.0 47.2 

Pb % input 34.2 38.4 

S % input 72.4 11.5 

V % input 21.0 12.8 

Zn % input 14.8 7.30 

Transfer to oil 

(% of content in waste 
input) 

Al % input 0.008 0.005 

C % input 59.0 9.51 

Ca % input 0.181 0.313 

Cd % input 0.048 0.032 

Cl % input 2.74 1.61 

Cr % input 0.164 0.089 

Cu % input 0.002 0.002 

Fe % input 0.091 0.158 

Hg % input 3.88 0.749 

Mn % input 0.008 0.002 

N % input 58.0 18.3 

Ni % input 0.180 0.202 

Pb % input 0.053 0.073 

S % input 20.8 12.0 

V % input 0.027 0.031 

Zn % input 0.032 0.024 

Transfer to gas 

(% of content in waste 
input) 

Al % input 0.994 1.00 

C % input 9.34 2.34 

Ca % input 0.564 0.321 

Cd % input 0.100 0.100 

Cl % input 1.000 1.00 

Cr % input 0.100 0.100 

Cu % input 0.100 0.100 

Fe % input 0.100 0.100 

Hg % input 94.6 1.41 

Mn % input 0.100 0.100 

N % input 0.000 0.000 

Ni % input 5.00 20.0 
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Pb % input 0.100 0.100 

S % input 0.000 0.000 

V % input 0.100 0.100 

Zn % input 0.100 0.100 

 
Table 9 – Inventory dataset for the disposal of SR in a landfill (after Møller et al., 2014). 

Type Substance Production Release* Uncertainty (%) 

Gas  kg/kgSR kg/kgSR  

CH4 1.2*10-2 8.4*10-3  

CFC-11 1.3*10-7 1.3*10-8  

HCFC-21 1.8*10-6 8.8*10-7  

HCFC-31 1.3*10-6 9.1*10-7  

HFC-41 6.5*10-8 6.5*10-8  

CFC-12 6.5*10-8 4.6*10-8  

HCFC-22 1.3*10-7 1.0*10-7  

HFC-32 0.0 0.0  

HFC-134a 6.5*10-7 6.5*10-7  

HCFC-141b 1.3*10-7 1.0*10-7  

Leachate  kg/kgSR % of leachate content  

Total-N 4.5*10-4 9.80%  

Total-P 5.5*10-6 9.00%  

𝐶𝑙− 9.8*10-4 100.00% 60 

𝐹− 4.0*10-6 14% 38 

𝑆𝑂4
2− 2.2*10-5 14% 39 

𝐻𝐶𝑂3
− 7.3*10-3 14%  

NVOC (DOC) 1.2*10-3 14%  

𝑆 − 𝑆2− 6.6*10-7 14%  

Al 1.1*10-7 0.30% 48 

As 1.0*10-7 87.00% 16 

Ba 1.8*10-6 13.90% 29 

Ca 5.3*10-4 92.10% 39 

Cd 7.1*10-11 13.90% 74 

Co 2.0*10-9 17.00% 37 

Cr (VI) 2.3*10-9 11.20%  

Cr (tot) 2.0*10-8 11.20% 68 

Cu 7.0*10-9 2.00% 23 

Fe 4.1*10-5 1.70% 93 

Hg 1.7*10-10 10.30% 131 

K 4.5*10-4 94.30% 19 

Mg 7.0*10-4 95.10% 26 

Mn 1.3*10-6 47.10% 34 

Mo 9.6*10-9 95.00% 31 

Na 8.5*10-4 89.20% 44 

Ni 1.2*10-7 47.10% 47 

Pb 7.1*10-10 2.70% 71 

Sb 6.7*10-9 45.80% 34 

Se 2.3*10-9 14% 2 

Si 4.3*10-5 14% 45 

V 3.1*10-8 16.90% 68 

Zn 9.6*10-8 7.30% 61 

Benzene (sum) -3*10-7 30%  

PAH -6.0*10-11 29%  

PAH -6.0*10-11 29%  

* For gas: release after oxidation; for leachate: release after wastewater treatment. 
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4.1.5 LCI of co-combustion of SR in a cement kiln 

As data regarding the co-combustion of SR in a cement kiln are not available for Denmark, a generic 

process was assumed for LCI modelling. Data on SR composition and emissions released into the 

air were retrieved from Vermeulen et al. (2012) and used to estimate TCs emitted into the air for a 

range of compounds. This project was chosen because it was the only available published study 

providing both the composition of SR input into a cement kiln as well as emissions into the air of a 

number of compounds, thereby allowing us to determine air emissions as input-specific. With 

regards to solid residues, it was considered that the inert part of SR (i.e. ash and metals) would end 

up in the clinker, and thus no further modelling was included. The inventory dataset for the co-

combustion of SR in a cement kiln is presented in Table 10. 
Table 10 – TCs (%) into the air for the co-combustion of SR in a cement kiln. 

 TCs (%) into air 

Compound Median Deviation 

C 100  

S 0.0397 0.1071 

As 0.0001 0.0003 

Cd 0.0172 0.0478 

Cr 0.0005 0.0013 

Cu 0.0273 0.0790 

Hg 0.0367 0.1038 

Ni 0.0022 0.0089 

Pb 0.0571 0.2195 

Zn 0.3730 1.2975 

 

4.1.5.1 Feasibility of the co-combustion of SR in a cement kiln 

Cement kilns typically have restrictions on the quality of the fuel used for producing clinker. Co-

combustion of SR may thus be questionable, if at all possible or allowed. The technical feasibility of 

the scenario was therefore assessed with some desktop-based considerations. The estimated 

composition of SR used for co-combustion in Scenario 4 was compared with acceptance values for 

RDF used in cement production at Aalborg Portland. The results of the comparison are showed in 

Table 11, where it is evident that for a large number of parameters quality acceptance criteria would 

not be met by SR with a composition as modelled in this study. This means that, in practice, the co-

combustion of SR in a cement kiln would only be feasible for a ‘designed’ composition of SR, where, 

for example, metals are sorted out to a larger extent than is currently done. This conclusion, 

however, should be supported by additional tests. 
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Table 11 – Comparison between quality acceptance criteria for the co-combustion of RDF in a 
cement kiln (Aalborg Portland) and the compositing of SR going to a cement kiln as estimated 
for Scenario 4. Values marked in grey exceed the quality criteria. 

Name of Fuel RDF – Refuse Derived Fuel 

Origin 
A solid recovered fuel (SRF/RDF), made from combustible non-hazardous waste 
(municipal solid waste, specific waste, industrial waste and commercial waste), mainly 
consisting of organic components such as Cl-free plastics and biodegradable waste. 

Physical appearance Fine, fluffy product.  

Physical cleanliness 
Shall be free from foreign materials such as metals, glass, PVC, oils etc., and shall not be 
more contaminated by salts, soils, heavy metals and liquids, as is normal for this type of 
material. 

Parameter Unit Typical value Lower Upper Standards LCI Modelling 

LHV kcal/kg (DB) 5,000 4,000 

 

CEN/TS 15400 

 LHV MJ/kg (DB) 21 17 

 

CEN/TS 15400 18.3 

LHV MJ/kg (AR) 17 16 

 

CEN/TS 15400 

 Moisture % (AR) 10 
 

15 CEN/TS 15414 9.57 

Ash % (AR) <10 

 

15 CEN/TS 14775 32.7 

S % (DB) 
  

1 CEN/TS 15408 0.42 

Cl % (DB) 0.5 
 

0.8 CEN/TS 15408 1.09 

F % (DB) 

  

0.5 CEN/TS 15408 

 Br % (DB) 

  

0.25 CEN/TS 15408 0.05 

I % (DB) 

  

0.25 CEN/TS 15408 

 Biomass Content %-w (DB) 50 

    Size, Length/Width mm 25 
 

40 CEN/TS 15415 

 Size, Thickness mm < 3 
 

5 CEN/TS 15415 

 Metals 
   

   Mercury (Hg) mg/kg (DB) <1 
 

1 CEN/TS 15411 2.79 

Cadmium (Cd) mg/kg (DB) <9 

 

9 CEN/TS 15411 10.4 

Thallium (Tl) mg/kg (DB) <1 

 

1 CEN/TS 15411 

 Total Group II Metals mg/kg (DB) <10 

 

10 

  Antimony (An) mg/kg (DB) <150 

 

150 CEN/TS 15411 359 

Arsenic (As) mg/kg (DB) <20 
 

20 CEN/TS 15411 52.6 

Chromium (Cr) mg/kg (DB) <150 
 

150 CEN/TS 15411 418 

Cobalt (Co) mg/kg (DB) <20 
 

20 CEN/TS 15411 

 Copper (Cu) mg/kg (DB) <500 

 

500 CEN/TS 15411 7887 

Lead (Pb) mg/kg (DB) <200 

 

200 CEN/TS 15411 2787 

Manganese (Mn) mg/kg (DB) <150 

 

150 CEN/TS 15411 1115 

Nickel (Ni) mg/kg (DB) <70 

 

70 CEN/TS 15411 390 

Tin mg/kg (DB) <15 

 

15 CEN/TS 15411 222 

Vanadium (V) mg/kg (DB) <10 
 

10 CEN/TS 15411 41.8 

Total Group III Metals mg/kg (DB) <800 
 

800 

  Organics Must not contain dioxins, furans, PCBs or other hazardous components. 

Waste Code 191210 according to the European Waste Catalogue (EWC). 

Quality Control 
The supplier must have a quality control system and provide a declared analysis of LHV, 
Moisture, Ash, S/Cl/F/Br/I & Heavy Metals. 

DB = Dry Basis; AR = As received 

 

  



Life cycle assessment of shredder residue management 37 

 

4.1.6 LCI of the biological treatment of SR before disposal in a landfill 

As described in Chapter 3, all the assessed scenarios include the landfilling of a significant amount 

of unsorted residues (i.e. residues <4 mm in Scenarios 2, 3 and 4, and both <4 mm and >4 mm 

residues in Scenario 1). To prevent both landfill gas formation and emissions of other potentially 

harmful substances into the environment, aerobic biological treatment is employed to reduce the 

organic content and thus stabilise the fine residues. This treatment will also ensure compliance with 

quality criteria for waste landfilling (Møller et al., 2014), as specified in EU Council Decision 

2003/33/EC (European Council, 2003).  

 

A comprehensive description of the process involved in the biological treatment of SR fractions to 

be landfilled is reported in Møller et al. (2014). Inventory data are provided by BIOSA Denmark 

Aps, based on information originating from an SR-treating plant located in Germersheim, 

Germany. 

 

4.1.6.1 Technology description 

The biological process for stabilising SR fractions to be landfilled consists of an ad hoc modified 

composting process. SR is mixed with water and a bacterial suspension and then laid in up to 100 m 

long composting windrows. The composting process lasts for 8-10 weeks at temperatures in the 

range 55-75˚C. The composting windrows are turned periodically using windrow turners. As a 

result of the composting process, mass is significantly reduced, while the stabilised SR is darker and 

presents a finer grain size compared with the SR input into the process. According to chemical 

analyses performed in Germersheim, the treated SR material complies with the limits for waste to 

be landfilled. 

 

As mentioned previously, the process makes use of inoculum, consisting of a bacterial suspension, 

which is meant at enhancing the SR degradation process. However, as the effects of inoculum 

addition cannot be quantified, the biological treatment of SR is hereby modelled as a conventional 

windrow composting process (i.e. without the addition of microorganisms). This exclusion is 

expected not to have a significant impact on the results, for two reasons. Firstly, the use of bacterial 

suspension is rather minimal (see Table 12), while other studies (e.g. Boldrin et al., 2013) including 

even larger amounts of enzyme-based inoculum have concluded that enzyme production is not a 

main contributor to total impact. Secondly, a main effect of inoculum utilisation would be a 

shortening of the retention time during the composting process and a subsequent reduction in 

electricity and fuel consumption for process operations. However, as shown in Table 12, the 

consumption of diesel and electricity is rather minor, and results on potential impacts, presented in 

Chapter 5, will show that these make a rather non-significant contribution. 

 

4.1.6.2 Inventory 

As there is currently no operating plant for the biological treatment of SR in Denmark, the 

inventory dataset is built on data provided by BIOSA Denmark Aps, based on information 

originating from a plant treating SR and located in Germersheim, Germany. The information 

includes mass balance and data describing the biodegradation and emissions occurring during the 

treatment process, as well as emissions from the process. Data on energy consumptions were 

estimated by Møller et al. (2014) based on literature data. An overview of the inventory dataset used 

for modelling the biological treatment of SR is provided in Table 12. 

4.2 Marginal energy production 

The treatment of increasing amounts of SR will result in increasing demand for energy (in 

particular electricity) to operate the treatment processes. On the other hand, when SR is thermally 

treated and energy is recovered, the production of electricity and district heating also has an effect 

on the energy market, because the increasing production of electricity and heat from incineration 

displaces energy production somewhere else in the system. The substituted marginal electricity was 

presumed to by coal, as reported in Astrup et al. (2011b). To cover the future potential development 
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of the Danish electricity system, gas-based and wind-based marginal electricity scenarios were also 

modelled. Marginal heat is much dependent on the settings of the local district heating system. As 

described in Jacobsen et al. (2013), it was assumed that the heat from SR incineration substitutes 

for average Danish district heating. Inventories for marginal energy productions are provided in 

Appendix 7. 

4.3 Selection of datasets for the primary production and recycling of 

materials 

Inventory datasets for the primary production and recycling of materials were selected according to 

the recommendations made by Møller et al. (2014). An overview of the datasets used herein is 

provided in Table 13, where it is evident that data were retrieved from two sources, namely the 

EASETECH and the Ecoinvent databases. As explained in Møller et al. (2014), these data were 

selected by prioritising recently developed datasets as well as data having a geographical scope in 

accordance with the scope of the present study. A detailed description of the dataset for plastic 

recycling is provided in Appendix 7, while a description of the other datasets found in Table 13 is 

provided in Møller et al. (2014). 
Table 12 – Inventory dataset for the biological treatment of SR (adapted from Møller et al., 
2014). 

Type Parameter Unit Quantity 

Input SR ton 1 

Bacterial suspension l/ton 3 

Electricity kWh/ton 0.2 

Diesel l/ton 3 

Process C degradation  % of biogenic C 17.5 

N degradation % of organic N 2.5 

Emissions CH4 % of degraded biogenic C 2.7 

N2O % of degraded organic N 22 

NH3 % of degraded organic N 78 

TOC g/ton 17-19 

 
Table 13 – Overview of inventory datasets for the primary production and recycling of materials 
used in the LCI modelling of SR treatment, as selected by Møller et al. (2014). 

Material Process name Type Database Year Reference 

Aluminium 

Aluminium, Al (Primary), World average, 2005 Primary EASETECH 2005 
Clavreul et al., 
2014 

Aluminium scrap to new alu. sheets (re-
melting), Sweden, 2007 

Recycling EASETECH 2007 
Clavreul et al., 
2014 

Iron 

Steel sheets (97.75% primary), Sweden, 2008 Primary EASETECH 2008 
Clavreul et al., 
2014 

Shredding and reprocessing of steel scrap, 
Sweden, 2007 

Recycling EASETECH 2007 
Clavreul et al., 
2014 

Copper 

Copper, primary, at refinery/RER U Primary Ecoinvent 1994 
Classen et al., 
2009 

Copper, secondary, at refinery/RER U Recycling Ecoinvent 1994 
Classen et al., 
2009 

Plastic 

Polyethylene, HDPE, granulate, at plant/RER S Primary Ecoinvent 1999 Hischier, 2007 

Postconsumer recycled HDPE pellet, US, 2011 Recycling EASETECH 2011 
Franklin 
Associates, 2011 

Glass 

Glass – bottle (primary), EDIP, 1990 Primary EASETECH 1990 
Miljøstyrelsen, 
1998 

Glass cullet to new products (re-melting), 
EDIP, 1990 

Recycling EASETECH 1998 
Miljøstyrelsen, 
1998 
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4.4 Quality Indicator Values for processes used in the LCA 

To obtain a more quantitative expression of process quality, all processes used in the study were 

assigned a quality indicator value, for the external processes of primary production and recycling, as 

well as processes specifically designed for this LCA. The values were assigned to five indicator 

categories, as seen in Table 14, based on Weidema & Wesnæs (1996) and as described in Chapter 

2.10. They cover the following categories: ‘credibility’, ‘completeness’ and ‘temporal, geographical 

and technological correlation’. Assigned indicator values are computed by comparing the processes 

with the processes as they should be, in order to fit fully into the environmental assessment 

scenarios. 
Table 14 - Scoring of processes for use in the environmental assessment. All processes are 
scored with a value 1-5 (‘1’ is the best) for each of the quality indicators. 

Material Type Process 
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Processes designed specifically for this project 

SR Unsorted Sorting 3.6 3 1 1 3 2 

>4 mm Incineration 1 3 2 1 3 2 

>4 mm Pyrolysis 3 3 2 2 4 2.8 

>4 mm Cement Kiln 4 4 2 4 4 3.6 

<4 and >4 
mm 

Biological Treatment 3 4 1 3 4 3 

<4 and >4 
mm 

Landfill 2 4 2 1 3 2.4 

Process name in database 

Aluminium Secondary Aluminium scrap to new alu. sheets (re-melting), 
Sweden, 2007 

1 4 3 3 2 2.6 

Primary Aluminium, Al (Primary), World average, 2010 1 3 3 2 1 2.0 

Iron Secondary Shredding and reprocessing of steel scrap, Sweden, 
2007 

1 4 3 3 2 2.6 

Primary Steel sheets (97.75% primary), Sweden, 2008 1 3 3 3 2 2.4 

Copper Secondary Copper, secondary, at refinery/RER U 2 2 3 2 2 2.2 

Primary Copper, primary, at refinery/RER U 2 2 3 2 2 2.2 

Plastic Secondary Plastic to HDPE granulate, Franklin Associate, USA, 
2011 

1 3 2 3 2 2.2 

Primary Polyethylene, HDPE, granulate, at plant/RER S 1 1 4 1 2 1.8 

Glass Secondary Glass cullet to new bottles (re-melting), Denmark, 1998 1 3 4 1 2 2.2 

Primary Glass bottle, primary, EDIP, Denmark, 1990 3 3 4 1 1 2.8 
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5. Evaluation of potential 
environmental impacts 

In this chapter, normalised results regarding potential environmental impacts from the treatment 

of SR in Denmark are presented: 

 as a total impact for individual scenarios; 

 disaggregated for individual processes within scenarios and 

 disaggregated for individual material fractions. 

Numerically-negative values represent avoided environmental impacts – i.e. environmental savings 

related to avoiding the production of material and energy – while numerically-positive values 

represent net impacts (i.e. burdens) on the environment. Characterised potential impacts are 

provided in Appendix 8. 

5.1 Total potential environmental impacts 

Potential impacts on non-toxic categories for the analysed scenarios are presented comparatively in 

Figure 10. The handling of SR according to Scenario 1 shows overall savings for Global Warming, 

Photochemical Oxidant Formation and Terrestrial Eutrophication, mostly because of the benefits 

associated with recovering and recycling plastic and aluminium fractions. For all impact categories, 

and within the uncertainty estimated in Figure 11, scenarios with increased energy recovery (i.e. S2-

incineration and S4-cement kiln) from SR >4 mm show significantly better environmental 

performance compared with the baseline landfill-based scenario (i.e. S1). The increased savings are 

related to the avoided production of marginal energy (for S2) and coal (for S4), indicating that 

increased energy recovery is a desirable option for the non-toxic categories. 

 
Figure 10 - Normalised potential non-toxic impacts from the treatment of 1 ton of SR in the four 
analysed scenarios (PE = person equivalent). 
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The use of pyrolysis as a thermal treatment option for the >4 mm fraction (i.e. S3) provides benefits 

for the Global Warming impact category, while resulting in significant environmental burdens in 

the remaining impact categories (in particular Photochemical Oxidant Formation, Terrestrial 

Acidification, Terrestrial Eutrophication and Marine Eutrophication), owing in particular to 

increased emissions of NOx from the combustion of pyrolysis oil. However, when including the 

uncertainty (i.e. Figure 11), it is noticeable that results for S3 are associated with significant 

uncertainty, mostly owing to the fact that the dataset for SR pyrolysis included rather broad ranges 

of data (see Chapter 4.1.3). This suggests that a clear conclusion on the environmental sustainability 

of pyrolysis as a treatment technology for SR is not possible with currently available data and 

understanding of the process. This means that further experimental investigations are needed 

before it can be concluded on whether pyrolysis is a possible treatment technology for SR. 

 

 
Figure 11 - Normalised potential non-toxic impacts from the treatment of 1 ton of SR in the four 
analysed scenarios (PE = person equivalent), including min-max range. 

Results for the potential toxic impacts are shown in Figure 12, where it is evident that the four 

analysed scenarios have comparable profiles for the impact categories Human Toxicity 

Carcinogenic, Particulate Matter and Ionizing Radiation. The three scenarios including the thermal 

treatment of >4 mm fractions all show increasing potential impacts on Human Toxicity non-

Carcinogenic and Ecotoxicity compared with the baseline scenarios, owing to increases in emissions 

into the air, specifically As and Hg. In particular, Scenario 4 presents potential impacts on Human 

Toxicity non-Carcinogenic and Ecotoxicity, which are far larger than the other scenarios, owing 

particularly to emissions into the air of Cu, Hg and Zn. Compared to other technologies, these large 

impacts are connected with greater emissions, owing to less efficient flue gas cleaning at the cement 

plant and higher volatility of these metals due to higher temperature in the kiln. Such findings 

confirmed the need for a pre-treatment step to produce an SR feedstock for the cement kiln with an 

RDF-like composition. This should especially include the additional screening and sorting of 

metals, to reduce the content of heavy metals in the feedstock and thereby significantly decrease 

emissions of compounds such as Cu, Hg and Zn into the air. 
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Figure 12 - Normalised potential toxic impacts from the treatment of 1 ton of SR in the four 
analysed scenarios (PE = person equivalent). 

Uncertainty related to the potential impacts on toxic categories is visualised in Figure 13, where it is 

noticeable that the results for Human Toxicity non-Carcinogenic (S2 and S4) and Ecotoxicity (S3 

and S4) are associated with very significant uncertainty. This is specifically due to large variabilities 

relating to some of the air emissions occurring during the different thermal treatment technologies 

(i.e. incineration for S2, pyrolysis for S3 and cement kiln for S4), as seen in Chapter 4.1.  

 

 
Figure 13 - Normalised potential toxic impacts from the treatment of 1 ton of SR in the four 
analysed scenarios (PE = person equivalent), including min-max range. 
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increased savings in fossil-based Resource Depletion, as a consequence of increased energy recovery 

and the subsequent replacement of marginal energy production. With regards to mineral Resource 

Depletion, S3 is the only scenario showing significant savings, mostly owing to the recovery of 

copper from the SR char produced by pyrolysis. 

 

 
Figure 14 - Normalised potential Resource Depletion from the treatment of 1 ton of SR in the 
four analysed scenarios (PE = person equivalent). 

 
Figure 15 - Normalised potential Resource Depletion from the treatment of 1 ton of SR in the 
four analysed scenarios (PE = person equivalent), including min-max range. 

5.1.1 Conclusions regarding total potential environmental impacts 

When comparing the four analysed scenarios, the results indicate that introducing the thermal 

treatment of SR >4 mm results in significant improvements in the non-toxic impact categories. 

-0.25

-0.2

-0.15

-0.1

-0.05

0

0.05

Resources,
Fossil

Resources,
Mineral

Im
p

a
c

t 
P

o
te

n
ti

a
ls

 (
P

E
/t

o
n

 S
R

)

Normalised Environmental Impact Potentials 
Resource Depletion Categories

Scenario 1 - Landfill Scenario 2 - Incineration Scenario 3 - Pyrolysis Scenario 4 - Cement kiln

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

S1 S2 S3 S4 S1 S2 S3 S4

Resources, fossil Resources, Mineral

Im
p

a
c

t 
P

o
te

n
ti

a
ls

 (
P

E
/t

o
n

 S
R

)

Normalised Environmental Impact Potentials 
Resource Depletion Categories

min max mean



44 Life cycle assessment of shredder residue management 

 

Clear conclusions cannot be drawn with regards to the implementation of S3, as data available for 

SR pyrolysis are rather uncertain. Addition experimental investigation is hence needed, preferably 

at full-scale testing facilities. 

 

The co-combustion of >4 mm fractions in a cement kiln could result in significant potential impacts 

on some of the toxic categories, owing in particular to some of the air emissions. These impacts 

could possibly be limited if SR were treated in a way that the content of some critical heavy metals 

(i.e. Cu, Hg and Zn) was reduced prior to feeding into the cement kiln. 

5.2 Potential environmental impacts by process 

In this chapter, potential environmental impacts are disaggregated according to individual 

processes, in order to identify and highlight the most sensitive ones. 

5.2.1 Scenario 1 

Disaggregated results for Scenario 1 are shown in Figure 16. In general, it is evident that the most 

significant contributions are associated with the material recycling of plastic and aluminium. 

Landfilling of <4 and >4 mm residues contributes potential impacts to Global Warming, Marine 

Eutrophication and Ecotoxicity, while bio-treatment prior to landfill contributes almost uniquely to 

fossil Resource Depletion, in connection with the use of energy expended to operate the process. 

 

Estimated benefits are associated with avoiding emissions connected with the replacement of 

primary productions of plastic and aluminium, namely NMVOC, NOx and SOx (for Photochemical 

Oxidant formation), SOx and some NOx (for Acidification), NOx and ammonia (for Terrestrial 

Eutrophication) and NOx (for Marine Eutrophication). Regarding human toxicity categories, 

savings are due to avoiding emissions of CrVI during plastic production (for Human Toxicity, 

Carcinogenic) and Hg from aluminium production (for Human Toxicity, non-Carcinogenic). 

Emissions of CrVI and Hg are mainly related to the production and use of energy in the products, 

and not directly from the production itself. Savings in Ecotoxicity and Particulate Matter are mainly 

caused by recycling plastic and aluminium, and specifically in relation to reduced emissions of V 

and CrVI (Ecotoxicity) and PM and SOx (Particulate Matter). The cause is here again contributed to 

by the use of energy in the production of materials. 

 

With regards to burdens (i.e. positive impacts), significant contributions are seen in Global 

Warming, Terrestrial Eutrophication (i.e. NOx), Marine Eutrophication (i.e. NOx and N), Ecotoxicity 

(i.e. As and Ni) and Depletion of Fossil Resources. 
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Figure 16 - Normalised potential impacts from the treatment of 1 ton of SR in Scenario 1, 
disaggregated according to individual treatment processes (PE = person equivalent). 

5.2.2 Scenario 2 

Disaggregated results for Scenario 2 are shown in Figure 17. In general, we see that the most 

significant contributions are associated with material recycling – plastic and aluminium – and the 

co-combustion of SR at a waste incinerator. 

 

Estimated benefits are associated with avoiding emissions connected with the replacement of 

primary productions of materials and energy, namely NOx (for Photochemical Oxidant formation), 

SOx and some NOx (for Acidification), NOx (for Terrestrial Eutrophication) and NOx (for Marine 

Eutrophication). Regarding human toxicity categories, savings are made from avoiding emissions of 

CrVI during plastic production (for Human Toxicity, Carcinogenic) and Hg from Al production (for 

Human Toxicity, non-Carcinogenic). Savings in Ecotoxicity and Particulate Matter are mainly 

related to the recycling of plastic and aluminium as well as SR co-incineration, and specifically to 

reduced emissions of V and CrVI (Ecotoxicity) and PM and SOx (Particulate Matter). 

 

With regards to burdens (i.e. positive impacts), significant contributions are seen in Human 

Toxicity non-Carcinogenic (i.e. Zn and some Hg) and Ecotoxicity (i.e. Zn), due to releases from the 

co-incineration process. 
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Figure 17 - Normalised potential toxic impacts from the treatment of 1 ton of SR in Scenario 2, 
disaggregated according to individual treatment processes (PE = person equivalent). 

5.2.3 Scenario 3 

Disaggregated results for Scenario 3 are shown in Figure 18. In general, we note that the most 

significant contributions are associated with the material recycling of plastic, aluminium and copper 

and with the pyrolysis of SR. 

 

Estimated benefits are associated with avoiding emissions connected with the replacement of 

primary productions of materials and energy, namely NMVOC and NOx (for Photochemical Oxidant 

formation), SOx and some NOx (for Acidification), NOx (for Terrestrial Eutrophication), and NOx 

(for Marine Eutrophication). Regarding human toxicity categories, savings are caused by avoiding 

emissions of CrVI during plastic production (for Human Toxicity, Carcinogenic) and Hg from 

aluminium production (for Human Toxicity, non-Carcinogenic). Savings in Ecotoxicity and 

Particulate Matter are mainly due to the recycling of plastic and aluminium, and specifically to 

reduced emissions of Cu and CrVI (Ecotoxicity) and PM (Particulate Matter). 

 

With regards to burdens (i.e. positive impacts), significant contributions originate especially from 

the pyrolysis of >4 mm SR. The most significant emissions are NOx (for Photochemical Oxidant 

formation), NOx and SOx (for Acidification), NOx (for Terrestrial Eutrophication), P (for Freshwater 

Eutrophication), NOx (for Marine Eutrophication), Zn (for Human Toxicity, non-Carcinogenic) and 

Cu and V (for Ecotoxicity). 
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Figure 18 - Normalised potential toxic impacts from treatment of 1 ton SR in Scenario 3, 
disaggregated according to individual treatment processes (PE = person equivalent). 

5.2.4 Scenario 4 

Disaggregated results for Scenario 4 are shown in Figure 18. In general, it is evident that the most 

significant contributions are associated with material recycling – plastic, aluminium and copper – 

and the co-combustion of SR in a cement kiln. 

 

 

 
Figure 19 - Normalised potential toxic impacts from the treatment of 1 ton of SR in Scenario 4, 
disaggregated according to individual treatment processes (PE = person equivalent). 
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Oxidant formation), SOx and NOx (for Acidification), NOx (for Terrestrial Eutrophication) and NOx, 

and to a lesser contribution from ammonia (for Marine Eutrophication). Regarding human toxicity 

categories, savings are caused by avoiding emissions of CrVI and Hg during plastic production (for 

Human Toxicity, Carcinogenic) and Hg and As from aluminium production (for Human Toxicity, 

non-Carcinogenic). Savings in Ecotoxicity and Particulate Matter are related mainly to the recycling 

of plastic and aluminium, and specifically to reduced emissions of V and CrVI (Ecotoxicity) and PM 

and SOx (Particulate Matter). 

5.2.5 Conclusions regarding potential environmental impacts by process 

The results are mostly influenced by the recycling of individual materials and thermal treatment, 

while SR landfilling generates limited potential impacts. The latter is related to the specific nature 

of SR, meaning that both the generation of gas and the release of metals into leachate are limited. 

 

Results show that the recovery and recycling of plastic and metal fractions provide significant 

benefits and should thus be continued and possibly further improved. While for many impact 

categories emissions of SOx and NOx (either in foreground or background processes) may be the 

main contributors, significant improvements in scenarios 2, 3 and 4 could be achieved by limiting 

emissions into the air of Cu and Zn during thermal treatment and the related impacts on especially 

some of the toxic categories. This possibly could be achieved by properly pre-treating >4 mm 

residues, in order to reduce the content of metals in the material fed into such processes. 

5.3 Potential environmental impacts by material fraction 

In Figure 20 (and Figure 25 in Appendix 8), normalised potential impacts on Global Warming are 

presented as per unitary input (i.e. 1 ton) of individual material fractions. In general, it is 

noteworthy that the recycling of both ferrous and non-ferrous metals provides the greatest savings, 

and it should thus be the first priority when analysing and designing a management scheme for SR. 

The next material is plastic, which can provide significant savings, especially if different resins are 

effectively sorted and the least possible amount of cross-contamination is achieved. 

 

With regards to the >4 mm residues fraction, the benefits potentially achievable are, to some extent, 

less significant than for the other fractions. The thermal treatment of >4 mm fractions induces 

significant improvements in the results for the impact on Global Warming, especially when looking 

at incineration and cement kilns. Results for pyrolysis of >4 mm residues are associated with very 

significant uncertainty, spanning from major savings in the case of optimal pyrolysis performance 

to positive burdens in the case of a bad configuration. As mentioned above, better data for pyrolysis 

are needed, in order to obtain more precise results, which can then be used as a basis for 

recommendations.  

 



Life cycle assessment of shredder residue management 49 

 

 
Figure 20 - Normalised potential Global Warming impacts in the four analysed scenarios, 
disaggregated according to individual material fractions and presented as per 1 ton of material 
(PE = person equivalent). 

5.4 Sensitivity analysis 

Sensitivity analysis is typically employed for identifying parameters, processes and datasets which 

make a significant contribution to the overall impacts of the analysed system and can thus be 

critical for results. As both contribution analysis and uncertainty quantification were performed in 

the previous sessions, the focus of the present sensitivity analysis is on the choice of background 

(i.e. marginal) electricity technology, which is often one of the most important decisions in an LCA, 

as both the usage and offsetting of electricity play a crucial role in overall savings. If the choice of 

marginal electricity was made as a part of the Monte Carlo simulation, it would be rather difficult to 

interpret whether the uncertainty was due to parameter variation or whether it was due to the 

scenario choice for the assumed electricity. It was therefore decided to perform a sensitivity analysis 

to assess what the impact would be if marginal electricity was not based on coal, as in the rest of the 

analysis, but instead on natural gas or wind power, which are possible future electricity sources in 

Denmark. 

  

Datasets for electricity production relate to natural gas and coal. For this we used processes from 

the NEEDS (2008) project, which forecasted emissions associated with future energy generation. 

For electricity based on natural gas, a process for a 500MWe combined cycle plant was used. For 

wind power, a process for an offshore wind farm of 752 MW was used.  

5.4.1 Sensitivity analysis of total potential environmental impacts 

Potential impacts on non-toxic categories for the analysed scenarios in the sensitivity analysis are 

presented comparatively in Figure 21. The figure shows that for most impact categories the change 

in marginal electricity does not result in significant differences. Scenarios 1 (landfilling) and 4 

(utilisation in a cement kiln) show increased savings, owing to the lower impacts resulting from the 

sorting and upgrading of materials, while no electricity is being offset. In this context, it should be 

mentioned that coal is still the energy source substituted in the cement kiln, as cement kilns will be 

operated on fossil fuels for several more decades to come. In the case of scenarios 2 (incineration) 

and 3 (pyrolysis), most impact categories show reduced overall savings, owing to the fact that the 

offset electricity has a lower impact.  
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In general, the ranking of scenarios according to their net impact is not affected by the change in 

marginal electricity. The only exception is the Global Warming category, demonstrating that when 

offsetting natural gas, incineration provides similar savings compared with landfilling, while the 

scenario based on pyrolysis is close to not offering a net saving. When considering wind power as 

the marginal electricity source, both scenarios based on incineration and pyrolysis have worse 

performance than the scenario based on landfilling. For all non-toxic impact categories, the 

scenario based on a cement kiln still seems the best option, as it is assumed that, even in the future, 

coal will still be used in kilns.  

 

Potential impacts on toxic categories for the analysed scenarios in the sensitivity analysis are 

presented comparatively in Figure 22. The figure shows that for most impact categories, the results 

are not associated with significant changes, the reason being that most impacts on toxic categories 

are due to direct emissions or the offsetting of materials being recycled. 

 

Potential impacts on Resource Depletion for the analysed scenarios in the sensitivity analysis are 

presented comparatively in Figure 23, which shows the same finding for fossil resources as for 

Global Warming potential, although in this case the ranking does not change. The reason for this is 

that even though there are very few resources offset from energy generation, fossil resources are still 

avoided through material recycling. For the depletion of mineral resources there is no change in 

impact when modifying marginal electricity. 

 

The sensitivity analysis highlights that with the cleaner energies being offset, the more important it 

becomes to recycle plastic in SR, or sort it out in an RDF fraction for the cement kiln.  

 

 
Figure 21 - Normalised potential non-toxic impacts from the treatment of 1 ton of SR in the four 
analysed scenarios modelled using alternative marginal electricity production (i.e. coal, natural 
gas and wind). (PE = person equivalent). 
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Figure 22 - Normalised potential toxic impacts from the treatment of 1 ton of SR in the four 
analysed scenarios modelled using alternative marginal electricity production (i.e. coal, natural 
gas and wind). (PE = person equivalent). Note that the following impacts were divided by 1,000: 
Ecotoxicity for Scenario 3 and 4; Human Toxicity non-Carcinogenic for Scenario 4. 
 

 
Figure 23 - Normalised potential Resource Depletion from the treatment of 1 ton of SR in the 
four analysed scenarios modelled using alternative marginal electricity production (i.e. coal, 
natural gas and wind). (PE = person equivalent). 
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6. Overall conclusions 

Based on data and current knowledge: 

 Diverting SR >4 mm fractions from landfill provides benefits from an environmental 

perspective and should thus be supported. 

 Sorting and recycling metals, plastics and glass are beneficial to the environment and should 

thus be continued. Special focus should be given to increasing metal recovery, as this provides 

the greatest environmental benefits. 

 Incineration seems currently the best option for the treatment of >4 mm residues. 

 Pyrolysis seems to have worse energy efficiency but better downstream metal recovery (i.e. 

from the residues) than incineration. However, a clear conclusion could not be drawn, because 

results for pyrolysis were associated with significant uncertainty, owing to the lack of precise 

inventory data describing the process. Thus, any decision regarding the implementation of 

pyrolysis for treating >4 mm SR fractions should first be supported by pilot- to full-scale tests 

of the process, to deliver a better understanding thereof. 

 The co-combustion of >4 mm fractions in a cement kiln could potentially provide significant 

savings for the Global Warming impact category. However, the current composition of the >4 

mm fractions is not suitable, meaning that co-combustion in a cement kiln could only be 

implemented with a specially designed fraction. This option, in practice, would need a pre-

treatment step to produce a feedstock with an RDF-like composition. This should especially 

include the additional screening and sorting of metals, to reduce the content of heavy metals in 

feedstock going into the kiln. Besides technical reasons, this would also result in a significant 

decrease in emissions into the air of heavy metals, which are largely responsible (especially Cu 

and Zn) for high potential impacts reported for some of the impact categories. 

 Pre-treatment of the >4 mm SR should be considered, in order to reduce the content of heavy 

metals (especially Cu and Zn) in material fed into thermal processes. 

 The results and recommendations are not significantly affected by the choice of the marginal 

technology, meaning they may still be valid within a different future energy system. 
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Appendix 1: List of processes from databases used in the LCA  

Table 15 shows the datasets retrieved from LCA databases and used in EASETECH to model the 

treatment of SR. 
Table 15 – Overview of datasets used for LCA modelling of SR treatment. 

Database Process 

EASETECH Road, Long haul truck, Euro3, 25t, Generic, 2006 

EASETECH 
Marginal Electricity Consumption incl. Fuel Production, Coal, Energy Quality, 
DK, kWh, 2006 

EASETECH Electricity, natural gas, at power plant, NORDEL 

EASETECH District Heating, marginal average, (DK), kWh, 2012 

EASETECH Natural Gas in Industry Burner (prod + comb), >100 kW, 1996 

EASETECH Extraction of sub-base material - gravel (L/S 10) 

EASETECH Aluminium, Al (Primary), World average, 2005 

EASETECH LPG (prod + comb), kg, TERMINATED, 1990 

EASETECH LIMITED - Glass - bottle (primary), EDIP, 1990 

EASETECH Natural gas, EU-27, ELCD, 2002 - corrected 

EASETECH Water from Waterworks, Sweden, 2008 

EASETECH Collection Vehicle, 10t Euro3, urban traffic, 1 liter diesel, 2006 

EASETECH Hard Coal in Power Plant (prod + comb), EU-15, 2003 

EASETECH Oxygen, EU-27, ELCD, 2005 - corrected 

EASETECH Steel Sheets (97.75% primary), Sweden, 2008 

EASETECH District Heating, Scania county, kWh, SE, 2008 

EASETECH Polyethylene high density granulate (PE-HD), RER, ELCD, 1999 - corrected 

EASETECH brass, at plant, CH 

EASETECH Process water, RER, ELCD, 2005 - corrected 

EASETECH LIMITED - Hydrated Lime, CaOH2, EU-27, ELCD, 2007 

EASETECH lead, primary, at plant, GLO 

Ecoinvent 2.2 
Light fuel oil, burned in industrial furnace 1 M, non-modulating, RER, 
modified 

EASETECH (EDIP, IPU-NF-
E2752) 

Production and Combustion of Diesel Oil in Truck, EU2, 1998 

EASETECH (UUID) Sodium chloride (NaCl), RER, ELCD, 1996 - corrected 

EASETECH (UUID) Sodium hydroxide (NaOH), RER, ELCD, 1996 - corrected 

Ecoinvent 2.2 Polyethylene, HDPE, granulate, at plant, RER 

Ecoinvent 2.2 Copper, primary, at refinery, RER 

Ecoinvent 2.2 Copper, secondary, at refinery, RER 

Ecoinvent 2.2 Lead, secondary, at plant, RER 

Ecoinvent 2.2 Zinc, primary, at regional storage, RER 

Ecoinvent 2.2 
Heat, natural gas, at boiler atmospheric low-NOx non-modulating <100kW, 
RER 

ELCD LIMITED - Limestone, CaCO3, EU-27, ELCD, 2006 

LIPASTO 

ILCD 
Wheel loader, combustion 1L of diesel, 2003/20 

LIPASTO 

ILCD 
Earth moving lorry, Gross vehicle mass 32t, pay load capacity 19t,Highway 
driving,EURO4 LIPASTO 

LIPASTO 

ILCD 
Bulldozer, combustion 1L of diesel, 2003/2011 
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Appendix 2: Chemical composition of newly produced shredder residues 

An overview of literature studies providing composition data for SR is provided in Table 16, where 

data are divided according to geographical origin. Table 16 shows that there are considerable 

differences in the type of shredder residues included in the studies. While in other countries most 

data represent ASR, the majority of data for Denmark focus on SR as a mixture of ASR and waste 

from other sources, indicating that data may not be directly comparable. 
Table 16 – Literature overview of composition data on shredder residues. 

Geographical area Reference Dataset description 

Denmark Cramer et al. (2006) 

 

SR-1996 

SR-2002 

SR-2002 

Nielsen et al. (2006)  ASR (100%) 

SR (80 SR-20% ASR) 

Nieminen et al. (2006) ASR (100%) 

SR 

SR-2005 

Hansen et al. (2011a) SR 

Nedenskov (2013) 

 

SR- Prøve 1 

SR-Prøve 2 

Poulsen et al. (2011)  SR-Del 1 

SR-Del 2 

SR-Del 3 

Høstgaard (2012) SR-1 (with <4mm) 

SR-2 (without <4mm) 

Italy Galvagno et al. (2001) ASR-min 

ASR-max 

Mirabile et al. (2002) ASR 

Zolezzi et al. (2004) ASR 

Mancini et al. (2010) ASR 

Fluff 1 

Fluff 2 

Fluff 3 

Morselli et al. (2010) ASR 

Santini et al. (2011) ASR-min 

ASR-max 

Ruffino et al. (2014) ASR 

Fiore (2012) SR 

ASR1 

ASR2 

LF 

LF < 4 mm 

LF > 4 mm, 

Mancini et al. (2014) ASR-2007 

ASR-2008 

Japan Osada et al. (2008) ASR 

Korea Roh (2013) ASR 

Spain 
de Marco (2007) Light ASR 

Heavy ASR 

Sweden Nourredine (2007) ASR 

United States Saxena et al. (1995) ASR 
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Table 17 presents physicochemical characteristics of typical Danish SR and ASR. For individual 

parameters, a ratio (based on average values) between SR and ASR is calculated to enable an overall 

comparison of the two types of materials. The results indicate that compared with ASR, SR present 

a higher content of metals (e.g. Al, Fe, Mn) and a lower content of combustibles (e.g. C, LHV). SR is 

also enriched with some of the critical heavy metals (e.g. Cr, Cu, Mo, Ni, Pb, Zn), possibly because of 

the industrial origin of a large share of these residues. 
Table 17 – Physicochemical characteristics of Danish SR based on literature data (SR= shredder 
residues; ASR= automotive shredder residues). 

  
SR, DK (20% ASR, 80% SR) ASR, DK (100% ASR) SR/ASR 

 
Unit Min Max Aver. Min Max Aver.  

Dry matter % 87.1 91.7 89.4 96.9 96.9 96.9 0.92 

Ash % TS 33.4 69.7 46.6 43.1 47.5 45.3 1.03 

C % TS 16.12 50.2 31.1 42.2 42.4 42.3 0.74 

N % TS 0.3 1.3 0.8 1.4 1.8 1.6 0.50 

LHV MJ/kg 9.4 21.3 14.5 14.9 14.9 14.9 0.98 

Si mg/kg TS 400 91000 47213.6 7200 7200 7200 6.56 

Al mg/kg TS 126 26000 16779.4 12000 12000 12000 1.40 

Ca mg/kg TS 305 35000 19058.6 5000 5000 5000 3.81 

Fe mg/kg TS 830 132000 61400.8 6500 6500 6500 9.45 

K mg/kg TS 27 3700 1921.0 280 280 280 6.86 

Mg mg/kg TS 60 6500 3920.0 6300 6300 6300 0.62 

Mn mg/kg TS 0 1200 548.6 90 90 90 6.10 

Na mg/kg TS 61 9600 5352.9 12000 12000 12000 0.45 

P mg/kg TS 11 820 392.4 80 80 80 4.91 

S mg/kg TS 60 2800 1829.0 2700 3700 3200 0.57 

Ti mg/kg TS 43 3500 2050.6 490 490 490 4.18 

As mg/kg TS 1 36 18.9 0 0   

Ag mg/kg TS 0 0  0 0   

Ba mg/kg TS 29 2800 1259.9 1590 1590 1590 0.79 

Be mg/kg TS 0.53 0.53 0.5 0 0   

Cd mg/kg TS 15 40 27.1 0 0   

Co mg/kg TS 28 51 38.0 0 0   

Cr mg/kg TS 4 890 306.8 70 70 70 4.38 

Cu mg/kg TS 19 25000 14019.1 660 660 660 21.24 

Hg mg/kg TS 0.82 1.6 1.2 0.8 0.8 0.8 1.51 

Mo mg/kg TS 10 53 23.6 2 2 2 11.79 

Nb mg/kg TS - - - 0 0   

Ni mg/kg TS 2 480 245.8 20 20 20 12.29 

Pb mg/kg TS 14 13000 3668.0 140 140 140 26.20 

Si mg/kg TS 2300 2300 2300.0 0 0   

Sb mg/kg TS 3 300 159.0 0 0   

Sc mg/kg TS - - - 0 0   

Se mg/kg TS 1.4 1.4 1.4 0 0   

Sn mg/kg TS 2 180 73.4 10 10 10 7.34 

Sr mg/kg TS 2 370 160.6 30 30 30 5.35 

V mg/kg TS 39 61 53.8 0 0   

W mg/kg TS 130 130 130.0 0 0   

Y mg/kg TS 7 7 7.0 0 0   

Zn mg/kg TS 243 20000 12503.8 1000 1000 1000 12.50 

Zr mg/kg TS 2 270 76.5 20 20 20 3.83 

Br mg/kg TS 10 2100 532.5 0 0   

Cl mg/kg TS 84 26000 15153.3 17000 24000 20500 0.74 

F mg/kg TS 220 350 303.3 100 270 185 1.64 

I mg/kg TS 4.9 4.9 4.9 0 0  0.92 

  

Cramer et al. (2006); Nielsen et al. (2006); 
Nieminen et al. (2006); Hansen et al. (2011a); 
Nedenskov (2013); Poulsen et al. (2011); 
Høstgaard et al. (2012) 

Nielsen et al. (2006); Nieminen et al. 
(2006)  
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As international literature data could not be used and data on ASR seemed not fully appropriate 

(Table 17), it was decided to use data provided by the few available Danish studies dealing with SR. 

While Table 16 and Table 17 reports composition of mixed SR, physicochemical composition of sub-

fractions of SR was also needed to assess management alternatives of individual fractions (see 

scenario description in Chapter 3). Only Hansen et al. (2011a) and Høstgaard et al. (2012) reported 

both grain size distribution, material fraction and chemical compositions of Danish SR. The results 

from these two studies are summarized in Table 18, Table 19 and Table 20. 
Table 18 - Grain size distribution of Danish SR. 

 Grain size average (%) st.dev. 

Hansen et al. (2011a) > 10 mm 37.11 9.69 

10  - 4 mm 17.35 1.18 

4 - 1 mm 14.31 2.92 

< 1 mm 31.23 7.21 

Total 100  

Høstgaard et al. (2012) > 6 mm 64.5 16.1 

3-6 mm 6.4 0.5 

< 3 mm 29.0 16.6 

Total 100  

Table 19 – Material fraction composition of Danish SR with particle size >10 mm (based on 
Hansen et al., 2011a). 

 > 10 mm 

 average (%) st.dev. 

Metals 14.5 2.6 

Plastic 35.6 2.0 

Rubber 20.6 4.4 

Wood 7.1 0.3 

Foam/Fluff 6.3 0.3 

Textile 0.8 0.1 

Paper/Cardboard 0.3 0.3 

Wires 3.1 0.1 

Electronics 0.4 0.0 

Glass/Ceramics 0.1 0.0 

Stones 5.1 0.0 

Misc /Mix 6.1 0.2 

Total 100  

Table 20 – Material fraction composition of Danish SR with particle sizes 3-6 mm and >6 mm 
(based on Høstgaard et al., 2012). 

Material fraction >6 mm 3-6 mm 

 average (%) st.dev average (%) st.dev 

Ferrous metal 1.25 0.67 9.21 0.05 

Non-Ferrous metal 4.32 0.22 4.27 0.13 

Tin can 0.90 0.10 0.30 0.12 

Plastic 29.13 1.52 8.82 0.90 

Rubber 9.89 0.07 1.68 0.36 

Wood 9.62 0.17 8.14 1.24 

Foam 4.06 0.85 1.39 0.64 

Electronic 2.97 1.45 1.48 0.24 

Dirt/inert 6.34 1.80 6.88 0.48 

Other 31.52 0.21 57.84 0.59 

Total 100  100  

 

For this project, it was considered that recovery of recyclables (i.e. glass, plastic and metals, see 

scenario description in Chapter 3) was performed on the >10 mm fraction, and thus the material 

fraction composition reported in Table 19 was used for the LCI modelling. This choice was also 

based on the fact that the composition reported in Table 20 includes a large amount of undefined 
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materials (i.e. ‘Other’) adding additional uncertainty to the modelling. However, as Hansen et al. 

(2011a) did only provide content of ‘Metals’ without further specify the type of metals, the relative 

distribution between ‘Ferrous metal’, ‘Non-Ferrous metal’ and ‘Tin can’ provided by Høstgaard et al. 

(2012) for >6mm fraction (Table 21) was used to estimate the content of individual metals in the 

waste composition. According to Table 20, the distribution of metals is shown in Table 22:  
Table 21 – Relative distribution of metal fractions in Høstgaard et al. (2012). 

Fraction Data in Table 20 (%) Relative distribution (%) 

 

average stdev average stdev 

Ferrous metal 1.25 0.67 19.31 10.51 

Non-Ferrous metal 4.32 0.22 66.74 8.08 

Tin can 0.90 0.10 13.95 2.17 

Total 6.48 0.71 

   

The residues after recovery of glass, plastic and metals would then be separated by means of a 

screen into two fractions, namely >4 mm and <4 mm. Combining data from Table 18 and Table 19, 

and assuming that recovery of glass, plastic and metals (in Table 19) reaches 90%, the material 

fraction composition reported in Table 22 is used for LCI modelling of Danish SR. Within 

uncertainty ranges, the data reported in Table 22 are very much in line with results from two 

sampling/sorting campaigns conducted by Stena Recycling in April 2014 at their Roskilde facility 

(these data cannot be disclosed because of confidentiality reasons). The error reported in Table 22 

was estimated based on uncertainty values reported in Table 18 and Table 19 and applying common 

rules for error propagation. 
Table 22 – Material fraction composition used for LCI modelling of SR. 

Fraction average (%) st.dev. 

Ferrous metal 0.93 0.53 

Non-Ferrous metal 3.22 0.99 

Tin can 0.67 0.21 

Plastic 11.88 2.86 

Rubber 6.89 2.10 

Glass 0.03 0.01 

>4mm 30.83 3.72 

<4mm 45.54 3.15 

Total 100  

 

The average physicochemical composition of fractions <4mm and >4mm (shown in Table 23  and 

Table 24) was estimated based on data provided by Hansen et al. (2011a) and Høstgaard et al. 

(2012). The geometrical mean and deviation were estimated according to the following formulas: 

 

Geometric mean 𝑒𝜇  

Deviation (𝑒𝜎2
− 1)𝑒2𝜇+𝜎2

 

 

where µ and σ are, respectively, the mean and standard deviation of the log-transformed data. As 

Hansen et al. (2011a) and Høstgaard et al. (2012) did not include data regarding water content in 

SR, it was decided to use values previously reported by Nieminen et al. (2006) for Danish SR: 89.4 

± 3.25% on wet weight. 
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Table 23 - Physicochemical composition of <4mm fractions of SR used in the LCI modelling. 

  Hansen et al. (2011a) Høstgaard et al. (2012)   

  4-1 mm <1 mm Prøv 1 Prøv 2 Prøv 3 geom mean deviation 

Ash % TS 72.20 82.10 83.69 83.69 83.69 80.9 21.6 

LHV MJ/kgTS 8.05 3.60 0.05 0.05 0.05 0.33 4.12 

C % TS 17.20 9.60 2.75 2.75 2.75 5.09 9.26 

H % TS 2.26 1.56 3.24 3.24 3.24 2.60 1.90 

N % TS 0.54 0.42 0.50 0.50 0.50 0.49 0.16 

Si mg/kg TS 93500 146000 115276 69740 107325 103328 66307 

Al mg/kg TS 39706 33708 21127 24854 27552 28668 17252 

Ca mg/kg TS 35467 34210 48749 84918 62339 50020 41523 

Fe mg/kg TS 188000 188409 151399 237249 207149 192386 88205 

K mg/kg TS 4104 6001 5610 9528 3301 5341 4609 

Mg mg/kg TS 6828 7202 10213 11016 12020 9216 5670 

Mn mg/kg TS 1914 1884 1601 2707 2406 2066 1107 

Na mg/kg TS 13244 12403 13327 8010 12119 11627 6289 

P mg/kg TS 836 1282 2204 5317 496 1442 2778 

Ti mg/kg TS 3573 5091 8112 4488 7408 5472 4163 

As mg/kg TS 52 33 401   88.4 286.1 

Ba mg/kg TS 3648 2991 2396 3805 3207 3168 1559 

Be mg/kg TS 1 1    0.64 0.19 

Cd mg/kg TS 14 44    25.2 41.0 

Co mg/kg TS 30 57    41.1 38.8 

Cr mg/kg TS 4110 1010 801 902 300 979 1947 

Cu mg/kg TS 44500 1950 1900 2800 1700 3793 13183 

Hg mg/kg TS 1 3    1.51 2.33 

Mo mg/kg TS 167 59    99.0 149.2 

Nb mg/kg TS 4 5    4.47 2.00 

Ni mg/kg TS 722 658 300 601 802 585 490 

Pb mg/kg TS 7000 2810 1499 2700 2907 2971 3356 

S mg/kg TS 2070 2740 7602 9719 8718 5159 7568 

Sb mg/kg TS 259 134 2207 500 200.0 377 923 

Sc mg/kg TS 1 1    0.95 0.27 

Sn mg/kg TS 951 338 200 501 401 419 488 

Sr mg/kg TS 765 616 200 300 401 408 453 

V mg/kg TS 97 82    89.1 34.6 

W mg/kg TS 166 216    189 95 

Y mg/kg TS 7 12    9.47 7.63 

Zn mg/kg TS 17400 25200 29696 71376 76336 37170 49679 

Zr mg/kg TS 377 472 601 601 802 553 366 

Br mg/kg TS 360 60 7927 500 401 510 2672 

Cl mg/kg TS 7240 2450 2565 7288 5101 4422 4887 

I mg/kg TS 2 4    2.78 2.60 

Li (*)  0.190 0.013    0.05 0.31 
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Table 24 - Physicochemical composition of >4mm fractions of SR used in the LCI modelling. 

  Hansen et al. (2011a) Høstgaard et al. (2012)   

  > 4 mm Prøv 1 Prøv 2 Prøv 3 geom mean deviation 

Ash % TS 55.00 36.40 36.40 36.40 40.4 21.4 

LHV MJ/kgTS 14.36 18.09 18.09 18.09 17.1 6.3 

C % TS 33.50 36.00 36.00 36.00 35.4 6.9 

H % TS 4.32 5.19 5.19 5.19 4.96 1.61 

N % TS 0.92 0.80 0.80 0.80 0.83 0.23 

Si mg/kg TS 79000 46300 34800 51000 50477 38061 

Al mg/kg TS 31500 14500 11300 14600 16568 15484 

Ca mg/kg TS 39100 36400 30400 27700 33087 14866 

Fe mg/kg TS 55500 101700 74900 69800 73703 44498 

K mg/kg TS 3260 3200 2600 3000 3003 1039 

Mg mg/kg TS 7570 6900 7100 6900 7112 1536 

Mn mg/kg TS 1120 1300 900 900 1042 506 

Na mg/kg TS 8070 6700 5600 7300 6857 3033 

P mg/kg TS 700 1300 1100 1400 1088 767 

Ti mg/kg TS 2840 5100 7500 5300 4898 4219 

As mg/kg TS 24 100   49.2 106.8 

Ba mg/kg TS 3460 3300 2600 1400 2539 2246 

Be mg/kg TS 1    0.62  

Cd mg/kg TS 10    9.73  

Co mg/kg TS 36    35.8  

Cr mg/kg TS 517 500 300 300 391 272 

Cu mg/kg TS 42100 2600 7700 3500 7370 21697 

Hg mg/kg TS 3    2.61  

Mo mg/kg TS 40    39.6  

Nb mg/kg TS       

Ni mg/kg TS 979 300 300 200 364 510 

Pb mg/kg TS 8610 1800 2700 1100 2605 4788 

S mg/kg TS 1680 7000 4900 4200 3944 4889 

Sb mg/kg TS 212 400 500 300 336 271 

Sc mg/kg TS 1    1.20  

Sn mg/kg TS 464 200 200 100 208 266 

Sr mg/kg TS 296 200 300 100 205 218 

V mg/kg TS 39    39.1  

W mg/kg TS 179    179  

Y mg/kg TS 4    4.49  

Zn mg/kg TS 24000 30600 27400 17300 24290 14551 

Zr mg/kg TS 198 300 300 200 244 142 

Br mg/kg TS 558 1300 500 100 436 1033 

Cl mg/kg TS 19300 11300 10300 4800 10190 11939 

I mg/kg TS 2    1.88  

Li (*)        
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Appendix 3: LCI of combustion of SR at a waste incinerator 

Jakobsen et al. (2013) provided a comprehensive inventory dataset for a state-of-the-art waste 

incineration plant in Denmark (Table 26). This inventory is based on data collected from state-of-

the-art Line 5 of Vestforbrænding I/S in 2012. The flue gas cleaning system includes wet scrubbing 

for acid gases removal, SNCR deNOx system and activated carbon filter for dioxin and Hg removal. 

The dataset is based on both process and input specific emissions, depending on whether the 

emissions are mostly controlled by the plant operation or are mainly related to the content of 

specific compounds in the waste input. 

 

The inventory from Jakobsen et al. (2013) is hereby used to model the combustion of SR at a waste 

incinerator in Denmark. The choice is explained in details in the following sections, where 

definition of uncertainty related to individual parameters is also estimated based on data from 

Vermeulen et al. (2012), Nedenskov (2013) and Mancini et al. (2014). 

 

Flue gas 

Process-specific and input-specific emissions reported in Jakobsen et al. (2013) are considered valid 

and thus used upon the condition that ASR is co-combusted with regular municipal solid waste up 

to a share of 12-14% and based on the following considerations: 

 Astrup et al. (2011a) tested co-combustion by blending 14% ASR into municipal solid waste. 

Table 25 presents composition of waste used in the test, the stack emission of specific 

compounds and the respective TCs. It is seen that despite the content of individual compounds 

significantly increased with the introduction of ASR in the feedstock blend (compared with 

municipal residual waste), emissions from the stack were not affected. In some cases, TCs to air 

seemed eventually to decrease with the addition of ASR, possibly because a significant share of 

the metals is likely to be embedded in a non-combustible matrix and are thus not volatilized to 

the flue gas phase. This may suggest that TCs for ASR are somehow lower than for residual 

waste and it is hence conservatively assumed that TCs for ASR equal to regular waste. While 

results are only available for As, Cd, Cr, Pb, and SB, a similar behaviour for other compounds is 

also assumed. 

Table 25 – TCs to air for 100% municipal residual waste and 14% blend of ASR, according to 
Astrup et al. (2011a). 

 100% normal waste (NW) NW (86%) + ASR (14%) 

 Stack (g) Waste (g) TC (%) Stack (g) Waste (g) TC (%) 

As 0.0029 10 0.029 0.0008 12.3 0.0065 

Cd 0.0066 6 0.11 0.0025 8.5 0.0294 

Cr 0.0035 105 0.0033 0.0053 182 0.0029 

Pb 0.125 290 0.0431 0.081 945 0.0085 

Sb 0.022 34 0.0647 0.01 83 0.012 

 Both Redin et al. (2001), Astrup et al. (2011a), Nedenskov (2011) and Vermeulen et al. (2012) 

reported regular functioning of the flue gas cleaning system and rather constant emissions 

during co-combustion of ASR with municipal solid waste. Redin et al. (2001) tested 20% ASR, 

Astrup et al. (2011a) performed a co-combustion test with 14% ASR on a mass basis, while 

Nedenskov (2011) tested a mix with 12.4% ASR and Vermeulen et al. (2012) a mix with 25 and 

39% ASR. 

 The Danish EPA deliberated to I/S Reno-Nord an environmental approval for co-combustion 

of ASR with municipal solid waste up to 12.5% on mass basis (Seerup, 2012). In the approval, 

the Danish EPA assessed that the flue gas cleaning system at I / S Reno-Nord will ensure that 

the emission of heavy metals to air emissions do not rise, or at least not rise significantly, as a 

consequence of ASR co-combustion. 

Table 26 – Inventory dataset for combustion of SR at a waste incinerator. 
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Type Parameter Unit Jakobsen et al. (2013) Deviation 

Input material NaOH kg/ton ww 0.024  

Activated carbon kg/ton ww 1.04  

CaCO3 kg/ton ww 5.67  

NH3 kg/ton ww 1.53  

Water kg/ton ww 397  

Ca(OH)2 kg/ton ww 0.34  

Polymer kg/ton ww 0.0006  

HCl kg/ton ww 0.0056  

TMT kg/ton ww 0.395  

Output Electricity % LHV, net 22  

Heat % LHV, net 73  

Process-specific air emission HCl kg/ton ww 0.0053  

CO kg/ton ww 0.033  

NOx kg/ton ww 0.849  

HF kg/ton ww 0.00039  

Dioxin kg/ton ww 1.8*10-11  

PM kg/ton ww 0.003  

SO2 kg/ton ww 0.00291  

Input-specific air emissions 

(% of content in waste input) 

Cl % input 0.1073 0.3036 

S % input 0.099 0.2801 

As % input 0.0121 0.0366 

Cd % input 0.0064 0.0174 

Cr % input 0.0394 0.1336 

Cu % input 0.00261 0.0092 

Hg % input 0.7476 2.0014 

Ni % input 0.0329 0.1007 

Pb % input 0.00081 0.0023 

Sb % input 0.0119 0.0337 

Zn* % input 0.0717 0.0994 

Bottom ash composition  

(% of content in waste input) 

Cl % input 5.3 2.81 

S % input 23.99 12.70 

As % input 40.62 21.50 

Cd % input 11.83 6.26 

Cr % input 83.15 44.01 

Cu % input 92.63 49.03 

Fe % input 96.92 51.30 

Hg % input 2.38 1.26 

Mo % input 96.61 51.14 

Ni % input 87.32 46.22 

Pb % input 48.47 25.65 

Sb % input 38.91 20.59 

Se % input 22.38 11.85 

Zn % input 51.76 27.40 

Fly ash composition  

(% of content in waste input) 

Cl % input 32.13 13.69 

S % input 60.91 25.95 

As % input 58.92 25.10 

Cd % input 88.13 37.55 

Cr % input 16.77 7.15 

Cu % input 7.35 3.13 

Fe % input 3.06 1.30 

Hg % input 96.25 41.01 

Mo % input 2.54 1.08 

Ni % input 12.56 5.35 

Pb % input 51.29 21.85 

Sb % input 59.84 25.50 

Se % input 76.73 32.69 

Zn % input 48.18 20.53 

* calculated based on Vermeulen et al. (2012) 

 

Vermeulen et al. (2012) investigated incineration of 100% ASR in a rotary kiln plant, reporting 

process-specific emissions very similar to Jakobsen et al. (2013) (Table 26). With regards to input-
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specific emissions, Vermeulen et al. (2012) reported slightly higher TCs for some of the assessed 

compounds (Table 28). The small differences (e.g. Cd and Cr) may be associated to the fact that, 

while Jakobsen et al. (2013) covered a grate furnace incineration plant, Vermeulen et al. (2012) 

performed a test on a rotary kiln process used for incineration of hazardous waste, thus running on 

higher temperature. 

 
Based on the abovementioned, data from Vermeulen et al. (2012) were used to estimate relative 
uncertainty in flue gas emissions, as reported in Table 26. Vermeulen et al. (2012) provided data 
(reported in Table 27) for both the waste composition used in the test and the amount of individual 
compounds emitted with the flue gas. In addition, data from Vermeulen et al. (2012) were also used 
to estimate TC to air for Zn, as it was missing in Jakobsen et al. (2013).  

 

The TCs to air (TCair) were calculated according as: 

 

𝑇𝐶𝑎𝑖𝑟 =
𝑂𝑢𝑡𝑝𝑢𝑡𝑎𝑖𝑟

𝐼𝑛𝑝𝑢𝑡𝑤𝑎𝑠𝑡𝑒
 

 

where Inputwaste is the content of a specific compound in the waste and Outputair is the emission of 

such compound to the atmosphere. Using a uniform distribution for Outputair (minimum and 

maximum showed in Table 27) and a lognormal distribution for Inputwaste (assuming average as the 

geometrical mean and mix/max as the 2.5/97.5% range Table 27), the TCair where computed 15ooo 

times. The obtained results were characterized by a log-normal distribution, for which median and 

variance were calculated, as shown in Table 28. For individual compounds, a coefficient of variation 

(CV) was calculated (see Table 28) and applied to TCs reported by Jakobsen et al. (2013) to derive 

the data variance reported in Table 26. The CVs were calculated as follows: 

 

CV (%) =
variance

median
 

 

The number of simulations was decided based on the following formula: 

 

𝜀 =
3𝜎

√𝑁
→ 𝑁 = (

3 × 𝜎

𝜀
)

2

= (
3 × 𝑠𝑡𝑑𝑒𝑣𝑝(𝑚𝑖𝑛, 𝑚𝑎𝑥, 𝑎𝑣𝑒𝑟𝑎𝑔𝑒(𝑚𝑖𝑛, 𝑚𝑎𝑥))

50
)

2

 

 
where ε is the error of the estimation (here assumed maximum 2%), σ is the deviation of the data 
and N the number of simulations. The value N was estimated for all individual compounds using 
data in Table 27, and a rounding of the maximum value (i.e. 14999) being then selected for running 
the simulation. 
Table 27 – Data regarding emissions to air and waste composition, as provided by Vermeulen et 
al. (2012). 

Compound Unit Air emission Waste composition 

  min max min max average 

C kg/tonSR 1.503  279 626 410 

N kg/tonSR   8.8 45 19 

S kg/tonSR 0.0044 0.0148 1.9 5.6 3.7 

As g/tonSR 3.03E-07 1.90E-02 1.2 70 30 

Cd g/tonSR 3.08E-03 3.07E-01 2 86 34 

Cr g/tonSR 7.09E-08 5.74E-03 17 7000 1120 

Cu g/tonSR 3.93E-06 3.44E+00 27 16,600 4910 

Hg g/tonSR 9.08E-03 1.66E-01 0.2 14 4.1 

Ni g/tonSR 1.91E-06 5.87E-01 54 4000 734 

Pb g/tonSR 1.04E-01 8.64E+00 94 7000 2610 

Zn g/tonSR 5.29E+00 5.78E+00 1430 14,100 8260 

Table 28 – TCair for combustion of SR incineration plant calculated based on data from 
Vermeulen et al. (2012). 

Compound Median Variance CV (%) 
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As 0.026 0.079 302 

Cd 0.354 0.961 272 

Cr 0.000 0.000 339 

Cu 0.021 0.073 351 

Hg 1.233 3.301 268 

Ni 0.014 0.044 306 

Pb 0.124 0.357 287 

Zn 0.072 0.099 139 

S 0.255 0.241 94.8 

 

Solid residues 

Table 29 presents that ratio between the amount of individual compounds ending in bottom ash 

(BA) and fly ash (FA). This can also be interpreted as a ratio between the TCs to BA and FA. It can 

be seen that the distribution of different substances to solid outputs varies significantly among 

individual incineration plants. It is thus not possible to combine the data to univocally define an 

average dataset to be used for estimating to uncertainty in solid distribution. 

 

It was thus decided to estimate the uncertainty of TCs using data from Mancini et al. (2014), who 

present repeated measurement on the same test system. Composition data on input waste and solid 

outputs were used to reconcile the mass and material balance of the system using STAN (Cencic and 

Rechberger, 2008). Data reconciliation allowed calculating the TCs - to bottom ash, fly ash and flue 

gas – and their respective uncertainty, as shown in Table 30. For individual compounds, CVs were 

calculated as follows: 

  

CV (%) =
variance

median
 

 

Using individual CVs, an average CV for TC to BA (i.e. 53%) and FA (i.e. 43%) were estimated 

(Table 30). These two CVs were then used to derive uncertainty (i.e. deviation) for TCs to BA and 

FA reported in Table 26 by multiplying individual TCs with the CVs. 

 
Table 29 – Ratio BA:FA according to Jakobsen et al. (2013), Astrup et al. (2011a) and Mancini et 
al. (2014). The ration is calculated for individual compounds by dividing the amount ending in 
bottom ash (BA) and fly ash (FA). For Mancini et al. (2014), FA includes both boiler ash and APC 
residues. 

 Ratio BA:FA 

 Jakobsen et al. (2013) Astrup et al. (2011a) Mancini et al. (2014) 

As 0.69 2.33 0.71 

Cd 0.13 0.19 0.02 

Cl 0.16 0.25  

Cr 4.96 8.09 2.70 

Cu 12.60 24.00 3.40 

Fe 31.67   

Hg 0.02 0.02 3.37 

Mo 38.04 3.55  

Ni 6.95 32.33 2.57 

Pb 0.95 3.55 0.48 

S 0.39 0.45  

Sb 0.65 1.44  

Se 0.29  0.49 

Zn 1.07 1.63 0.18 

Table 30 – TCs to fly ash and bottom ash, and respective CVs for incineration of ASR according 
to Mancini et al. (2014). 

 Fly ash Bottom ash 

 TC (%) st.dev. CV(%) TC (%) st.dev. CV(%) 

As 0.392 0.111 28.42 0.280 0.169 60.34 
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Ash 0.158 0.057 35.79 0.410 0.178 43.41 

Cd 0.955 0.544 56.94 0.018 0.023 131.32 

Cr 0.069 0.034 49.56 0.185 0.072 39.01 

Cu 0.194 0.136 69.96 0.661 0.689 104.29 

TS 0.063 0.011 17.89 0.169 0.010 5.89 

Hg 0.024 0.007 26.75 0.082 0.032 38.55 

Ni 0.120 0.056 46.72 0.309 0.102 33.14 

Pb 0.471 0.202 42.80 0.225 0.107 47.48 

Se 1.439 0.407 28.30 0.700 0.347 49.60 

VS 0.010 0.003 32.57 0.037 0.010 25.98 

Zn 1.362 1.030 75.61 0.240 0.135 56.15 

Average   42.61   52.93 

 

Leaching from solid residues 

Solid residues from combustion of SR in incineration plant are assumed to be used as sub-road 

basis material during road construction ( 

Figure 3 and  

Figure 4). Owing to water infiltration, leaching of different compounds from the solid residues may 

occur with subsequent potential adverse impacts on the environment. 

 

A univocal estimation of leaching coefficients from SR solid residues is however not feasible because 

SR would usually be incinerated in co-combustion with other waste materials (Seerup, 2012), 

typically a mixture of municipal and industrial solid waste. The effects of co-combustion on the 

chemistry of solid residues is rather complicated, meaning that estimating leaching factors specific 

for SR allocated according to the share of the co-fuels is not possible. 

 

Table 31 provides a comparison of leaching factors with increasing share of SR in the feedstock to 

the incineration process. It is seen that individual compounds show different behaviours, meaning 

that general conclusions cannot be drawn. This is in line with Hyks et al. (2014), that reported no 

clear correlation between the leaching of metals from residues and the increasing total content of 

metals in the residues when increasing the share of (A)SR in the feedstock. The release of some 

compounds (e.g. Ba, Cl, S) from solid residues seems to increase with increasing amount of SR in 

the feedstock, while for others (i.e. Cr, Cu, Mn, Ni, Zn) it seems to decrease, finally a number of 

compounds (i.e. As, Cd, Hg, Mo, Pb, Sb, Se, F, Na) do not show a specific behaviour.  

 

Results in Table 31 show that a consistent pattern across all compounds could not be determined 

and that using leaching factors measured for 100% ASR material (e.g. from Mancini et al., 2014) 

may not be correct. It was hence decided to use in the LCI modelling the leaching data originated 

from a feedstock with 12.4% SR (from Nedenskov, 2013), as this was considered the most realistic 

process condition. The interval ranges from Nedenskov (2013) reported in Table 31 were entered in 

the LCI modelling as uniform distributions. 
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Table 31 – Comparison of leaching from solid residues originating from incineration of SR, 
MSW and co-combustion. 

  100% MSW 

Nedenskov (2013) 

12.4% SR 

Nedenskov (2013) 

100% ASR 

Mancini et al. (2014) 

Tendency 

As µg/l 1.4-7.4 4.9-6.1 0.25-0.37 ↔ 

Ba µg/l 0.35-110 133-145 700-1133 ↑ 

Cd µg/l 0.04-0.2 0.133-0.150 0.06-0.1 ↔ 

Cr µg/l 8.1-380 15.0-19.0 0.62-1.43 ↓ 

Cu µg/l 195-1.900 315-550 <0.01 ↓ 

Hg µg/l 0.05-0.32 <0.2 0.08-1 ↔ 

Mn µg/l 150-1.000 <0.2-0.370  ↓ 

Mo µg/l   26.15-46.6 ↔ 

Ni µg/l 1-13 4.9-5.0 0.02-0.04 ↓ 

Pb µg/l 0.5-32 0.4-3.0 5.57-10.4 ↔ 

Sb µg/l   58.2-88.01 ↔ 

Se µg/l  2.9-3.7 1.41-2.05 ↔ 

Zn µg/l 5-90 8.7-13.0 <0.01 ↓ 

Cl mg/l 0.830-2.0 1.2-1.3 118.8-143.4 ↑ 

F mg/l   0.81-0.96 ↔ 

S mg/l 0.15-2.8 0.9-0.9 8.21-9.51 ↑ 

Na mg/l 0.10-1.50 0.8-0.963  ↔ 

DOC mg/l   <5 ↔ 

↑: increasing with increasing ASR share; ↓: decreasing with increasing ASR share; ↔: no clear tendency 
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Appendix 4: LCI of pyrolysis of SR 

The LCI of pyrolysis of SR was created as an average dataset based on available literature. Data 

regarding mass (Table 32) and energy (Table 33) distribution as well as chemical composition of 

char (Table 34 and Table 35) and oil (Table 36) products from the pyrolysis process were used to 

calculate average value and their uncertainty. These mean values (and their uncertainty) were then 

used to reconcile the mass, energy and substance balances of the SR pyrolysis system using STAN 

(Cencic and Rechberger, 2008), as shown in Figure 24, Figure 25, Figure 26, Figure 27, Figure 28, 

Figure 29. Data reconciliation allowed calculating the TCs to individual outputs - to char, oil, gas – 

and their respective uncertainty. An overview of the LCI dataset of pyrolysis of SR is finally shown 

in Table 37. 
 

 
Figure 24 – Reconciled mass balance for pyrolysis of 1 ton of SR. 

 
Figure 25 – Reconciled distribution of energy during pyrolysis of 1 ton of SR. 
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Table 32 - Literature overview of mass transfer during pyrolysis of ASR. 

  Input Output 

Source Test Waste Char Oil Gas Loss Metals Slag Fly ash 

  ton % input % input % input % input kg/tonASR kg/tonASR kg/tonASR 

/A/ 700 
°C 

1 68 4 14 14    

750 
°C 

1 64 7 17 12    

/B/ 

 

680 
°C 

1 43.57 20.07 13 23.36    

600 
°C 

1 44.55 32.62 9.04 13.79    

550 
°C 

1 59.28 19.52 4.23 16.97    

/C/  1 35 40 20 5    

/D/ 500 
°C 

1 55 25.7 5.8 13.5    

600 
°C 

1 52.3 30 11.5 6.2    

700 
°C 

1 39 24.2 24.1 12.7    

800 
°C 

1 37 21.8 34 7.2    

500 
°C 

1 47.5 35 7.7 9.8    

600 
°C 

1 37.5 43 5.8 13.7    

700 
°C 

1 33 55 8.5 3.5    

800 
°C 

1 25 58 12.2 4.8    

/E/ 400 
°C 

1 69.4 7.1 23.5     

500 
°C 

1 63.6 10.3 26.1     

700 
°C 

1 58.8 8.8 32.4     

400 
°C 

1 54.1 25.5 20.4     

500 
°C 

1 39.4 29 31.6     

700 
°C 

1 38.3 20.2 41.5     

/F/ 400 
°C 

1 38.7 12.3 49     

500 
°C 

1 42.2 13.6 44.2     

600 
°C 

1 45.8 18.2 36     

700 
°C 

1 47.4 13.4 39.2     

800 
°C 

1 44.6 14.4 41     

/G/ 

 

F1 1 75.49 16.01 3.8 4.7    

F2 1 69.09 22.35 3.73 4.83    

/H/  1 65 17 9 9    

/I/  1     58 170 39 

/J/  1     53   

mean  1 49.7 23.0 21.0 10.3 55.5 170 39 

st.dev.  0 13.2 13.6 14.2 5.39 3.54   

/A/: Shen et al. (1995); /B/: Galvagno et al. (2001); /C/: Pasel and Wanzl (2003) /D/: Zolezzi et al. (2004); /E/: 
de Marco et al. (2007); /F/: Joung et al. (2007); /G/: Høstgaard et al. (2012); /H/: Santini et al. (2012); /I/: Roh 
et al. (2013); /J/: Møller et al. (2014) 
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Table 33 – Literature overview of energy transfer during pyrolysis of ASR. 

  Input Output 

Source Test Waste Electricity Pyrolysis 
gas 

Pyrolysis 
oil 

Char Oil Gas Loss 

  GJ MJ GJ GJ % input % input % input % input 

/A/ 680 17.4    22.1 34.7 15.9 27.3 

600 17.4    22.6 56.3 8.25 12.8 

550 17.4    30.1 33.7 3.28 32.9 

/B/ 500 21    23.9 42.0 1.70 32.5 

600 21    20.4 49.0 8.42 22.2 

700 21    8.13 39.5 16.4 36.0 

800 21    8.42 35.6 28.4 27.6 

500 21    41.1 60.5 0.14 -1.74 

600 21    25.6 72.5 0.47 1.47 

700 21    22.2 78.0 2.36 -2.64 

800 21    16.5 79.6 4.33 -0.37 

/C/ 400     43.7 22.8 27.2 6.38 

500     26.0 33.0 37.8 3.14 

700     26.1 26.9 45.7 1.27 

400     42.3 36.6 11.5 9.66 

500     22.8 40.9 24.6 11.7 

700     22.6 28.1 29.6 19.7 

/D/ 400     27.8 23.4 48.8  

500     21.5 26.0 52.5  

600     17.1 33.9 49.0  

700     16.1 24.8 59.1  

800     17.1 26.5 56.4  

/E/ F1 10.8    61.0 33.2 2.40 3.49 

F2 15.0    53.9 33.8 1.65 10.6 

/F/  17.6 248.4 0.29 0.21 65.3 1.65 33.0  

mean  18.8 248.4 0.29 0.21 28.2 38.9 22.7 13.4 

st.dev.  3.11    14.9 18.3 20.1 12.9 

/A/: Galvagno et al. (2001); /B/: Zolezzi et al. (2004); /C/: de Marco et al. (2007); /D/: Joung et al. (2007); /E/: 
Høstgaard et al. (2012); /F/: Møller et al. (2014) 
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Table 34 – Typical physicochemical composition of char products from pyrolysis of ASR and SR 
(Part 1). 

Char  Ash VS H C N O S Cl P K Al Na Mg Si Ba 

  % ww % ww % ww % ww % ww % ww % ww % ww mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg 

/A/ 680   0.94 21.5 0.55  1.46 0.88        

600   1.37 19.9 0.54  1.38 0.54        

550   3.86 41.5 1.09  1.11 0.96        

/B/  68.0 32.0 0.60 28.6 0.69   2.30   14100     

/C/ 500   1.30 28.0 0.00 13.5 0.51         

600   0.70 27.0 0.00 12.1 0.84         

700   0.30 16.9 1.00 10.3 0.00         

800   0.39 15.6 0.00 6.73 0.73         

500   4.00 43.7 0.10 14.5 0.36         

600   1.70 39.5 0.00 10.0 1.00         

700   0.86 40.0 0.00 5.00 0.68         

800   0.69 40.0 0.00 5.70 1.26         

/D/ 400 73.7  1.60 20.8 0.90  0.60         

500 82.0  0.80 16.2 0.80  0.70         

700 87.4  0.30 16.8 0.70  0.70         

400 33.2  4.00 60.2 0.90  0.70         

500 44.7  1.50 50.4 1.10  0.90         

700 46.0  0.80 53.4 1.00  0.90         

/E/ SR                

ASR                

/F/ 400           4291     

500           6127     

600           8304     

700           9509     

800           12636     

/G/ Dp 13   2.99 30.8 0.81  0.95 5.30 1200 4300 14700 3900 10500 66000 6300 

mean  62.1 32.0 1.51 32.1 0.54 9.73 0.82 2.00 1200 4300 9952 3900 10500 66000 6300 

st.dev.  20.8  1.25 13.8 0.44 3.60 0.36 1.97   4011     

/A/: Galvagno et al. (2001); /B/: Roy and Chaala (2001); /C/: Zolezzi et al. (2004); /D/: de Marco et al. (2007); /E/: Forton et al. 
(2007) /F/: Joung et al. (2007); /G/: Høstgaard et al. (2012) 
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Table 35 – Typical physicochemical composition of char products from pyrolysis of ASR and SR 
(Part 2). 

Char  Mn Ca Cd Co Cr Cu Fe Hg Ni Pb Sb V Zn Ti 

  mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg 

/A/ 680               

600               

550               

/B/  1471 50200 73.0 118 223 15000 121000  1179 4300  43.0 14100  

/C/ 500               

600               

700               

800               

500               

600               

700               

800               

/D/ 400               

500               

700               

400               

500               

700               

/E/ SR      34624 44393   6220   14108  

ASR      18809 42856   2446   8930  

/F/ 400   10.2  135 15450 71604 0.08 129 2028  12.7 7336  

500   13.1  195 22198 39214 0.03 162 3069  14.1 6222  

600   19.7  143 14339 47824 0.02 217 2250  15.6 8561  

700   8.50  123 8203 65025 0.02 206 2110  16.5 7622  

800   4.80  90.3 8983 89432 0.08 205 1533  19.0 5235  

/G/ Dp 
13 

1700 80000   900 1700 123000   3500 700  35000 9600 

mean  1586 65100 21.6 118 258 15479 71594 0.0 350 3051 700 20.2 11901 9600 

st.dev.  162 21072   286 9416 32833 0.0 408 1460  11.4 9213  

/A/: Galvagno et al. (2001); /B/: Roy and Chaala (2001); /C/: Zolezzi et al. (2004); /D/: de Marco et al. (2007); /E/: Forton et 
al. (2007) /F/: Joung et al. (2007); /G/: Høstgaard et al. (2012) 
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Table 36 – Typical physicochemical composition of oil products from pyrolysis of ASR and SR. 

 Oil H C N O S Cl Al Cd Co Cr Cu Fe Hg Mn Ni Pb V Zn 

  % 
ww 

% 
ww 

% 
ww 

% 
ww 

% 
ww 

% 
ww 

mg/ 
kg 

mg/ 
kg 

mg/ 
kg 

mg/ 
kg 

mg/ 
kg 

mg/ 
kg 

mg/ 
kg 

mg/ 
kg 

mg/ 
kg 

mg/ 
kg 

mg/ 
kg 

mg/ 
kg 

/A/ 1 10.9 87.3 0.98 0.48 0.34  5.39  2.70 4.65 1.67 413   2.70 2.70  10.7 

2 10.4 78.8 2.46 8.07 0.27  8.74  10.5 2.23 3.53 1202   4.37 22.7  52.5 

3 11.4 81.3 2.63 4.42 0.25  6.42  11.5 1.58 3.07 290   3.26 10.3  22.5 

4 10.8 84.3 1.5 2.8 0.5 0.1   14.0 7.44   0.372   9.3  67.0 

5 10.7 84.2 0.69 3.56 0.72 0.13 0.53  0.22  0.26 51.6  0.31 0.12   9.11 

/B/ Heavy 
ASR 

9.6 86.2 1  0.3              

Light 
ASR 

9.6 81.1 1.5  0.4              

/C/ 600 8 74.3 0 15.2 0              

500 11 66 0.92 12.5 0.15              

600 11.2 64.4 0 15.6 0.3              

700 8.9 59.3 1.7 19 0.27              

800 8.5 58 1.5 19 0.7              

/D/ 500 9.6 81.1 1.5  0.4              

700 8.9 82.9 1.6  0.2              

400 10.4 85.2 1.1  0.3              

500 9.4 86.1 1  0.4              

700 8.8 86.8 1.9  0.4              

/E/ 400       5.16 0.004  2.67 0.26 27.2   2.88 1.97 0.005 20.5 

500       7.20 0.014  1.71 1.021 61.3   6.67 5.25 0.10 22.7 

600        0.02  1.09  8.62   0.64 6.42 0.013  

700       7.48   0.38  6.92    0.98 0.032 32.1 

800        0.03  0.23 2.795 7.22    2.5   

mean  9.89 78.1 1.29 10.06 0.35 0.12 5.85 0.02 7.78 2.44 1.80 230 0.37 0.31 2.95 6.90 0.04 29.6 

stdev  1.04 9.92 0.71 7.03 0.18 0.02 2.65 0.01 5.97 2.30 1.35 393   2.21 6.77 0.04 20.3 

/A/: Roy and Chaala (2001); /B/: de Marco et al. (2002); /C/: Zolezzi et al. (2004); /D/: de Marco et al. 
(2007); /E/: Joung et al. (2007) 

 



Life cycle assessment of shredder residue management 77 

 

 
Figure 26 – Al, Cd, Ca, C substance flow analysis for pyrolysis of 1 ton of SR. 
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Figure 27 – Cl, Cr, Cu, Fe substance flow analysis for pyrolysis of 1 ton of SR. 
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Figure 28 – Mn, Hg, Ni, N substance flow analysis for pyrolysis of 1 ton of SR. 
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Figure 29 – Pb, S, V, Zn substance flow analysis for pyrolysis of 1 ton of SR.  
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Table 37 – LCI dataset of pyrolysis of SR. 

Type Parameter Unit mean st.dev 

Input SR ton 1  

Electricity MJ/ton ww 248.4  

Pyrolysis oil GJ/ton ww 0.29  

Pyrolysis gas GJ/ton ww 0.21  

Output Char % LHV, net 25.0 30.1 

Oil % LHV, net 38.9 18.3 

Gas % LHV, net 22.7 20.1 

Ferrous metals kg/ton ww 

(% input) 

25.9 

(37.0) 

9.31 

(12.7) 

Non-Ferrous metals kg/ton ww 

(% input) 

25.7 

(8.24) 

11.3 

(6.18) 

Unsorted metals kg/ton ww 

(% input) 

12.9 

(6.73) 

9.56 

(7.70) 

Transfer to char 

(% of content in waste input) 

Al % input 17.88 10.09 

C % input 29.17 10.50 

Ca % input 66.05 16.79 

Cd % input 90.29 109.42 

Cl % input 71.06 81.38 

Cr % input 25.96 30.39 

Cu % input 23.93 16.17 

Fe % input 47.42 14.21 

Hg % input 0.75 0.71 

Mn % input 61.30 19.08 

N % input 39.81 17.56 

Ni % input 32.01 47.18 

Pb % input 34.23 38.39 

S % input 72.41 11.50 

V % input 21.01 12.80 

Zn % input 14.76 7.30 

Transfer to oil 

(% of content in waste input) 

Al % input 0.008 0.005 

C % input 58.999 9.510 

Ca % input 0.181 0.313 

Cd % input 0.048 0.032 

Cl % input 2.738 1.609 

Cr % input 0.164 0.089 

Cu % input 0.002 0.002 

Fe % input 0.091 0.158 

Hg % input 3.877 0.749 

Mn % input 0.008 0.002 

N % input 58.009 18.281 

Ni % input 0.180 0.202 

Pb % input 0.053 0.073 

S % input 20.80 12.02 

V % input 0.027 0.031 

Zn % input 0.032 0.024 

Transfer to gas 

(% of content in waste input) 

Al % input 0.994 1.000 

C % input 9.338 2.336 

Ca % input 0.564 0.321 

Cd % input 0.100 0.100 

Cl % input 1.000 1.000 

Cr % input 0.100 0.100 

Cu % input 0.100 0.100 

Fe % input 0.100 0.100 

Hg % input 94.627 1.410 

Mn % input 0.100 0.100 

N % input 0.000 0.000 

Ni % input 5.000 20.000 

Pb % input 0.100 0.100 

S % input 0.000 0.000 

V % input 0.100 0.100 

Zn % input 0.100 0.100 
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Appendix 5: LCI of disposal of SR in landfill 

Gas emissions from landfill 

Data regarding landfill gas production are taken from Møller et al. (2014) that, based on data 

regarding landfill gas production for landfilled SR provided by Scheutz et al. (2011), estimated an 

emission of CH4 (including oxidation effect) in the order of 0.166 kg per kg of biogenic C over 100 

years (i.e. the time horizon of the LCA). The amount of biogenic carbon still in the landfill after a 

100 year period - calculated as the C input minus the amount of carbon lost as methane – is 

accounted as a CO2 savings (Christensen et al., 2009). 

 

Emission and production of other gases were also retrieved from Møller et al. (2014), based on data 

from Scheutz et al. (2010a) and Scheutz et al. (2010b), as shown in Table 38. The release of 

individual gases is the estimated considering that part of the produced gases are oxidised during 

their migration through the upper layer of the landfill. 
Table 38 – Composition, production and release of gas from disposal of SR in landfill (from 
Møller et al, 2014). 

 Composition Oxidation Production Release after oxidation 

 %v/v % kg/kgSR kg/kgSR 

CH4 27±0.8 29 1.2*10-2 8.4*10-3 

CFC-11 2±1.2 90 1.3*10-7 1.3*10-8 

HCFC-21 27±9.7 50 1.8*10-6 8.8*10-7 

HCFC-31 20±7.8 30 1.3*10-6 9.1*10-7 

HFC-41 1±0.3 0 6.5*10-8 6.5*10-8 

CFC-12 1±0.5 30 6.5*10-8 4.6*10-8 

HCFC-22 2±0.4 20 1.3*10-7 1.0*10-7 

HFC-32 0±0.1 10 0.0 0.0 

HFC-134a 10±5.1 0 6.5*10-7 6.5*10-7 

HCFC-141b 2±0.5 20 1.3*10-7 1.0*10-7 

 

Leachate production and composition 

As described in Møller et al. (2014), data for modelling the production and composition of leachate 

produced from disposal of SR in a landfill is based on Hansen et al. (2011b), who performed 

leaching tests up to L/S of 9 l/kg. The amount of leachate produced in a 100 year period from 

disposal of SR in Danish landfill was estimated being 1.58 l/kgSR (Møller et al., 2014). The release of 

individual compounds to the leachate phase was then extrapolated based by interpolating release 

data as a function of the L/S ratio (Møller et al. 2014). 

 

As leachate generated in Danish landfills is typically treated before final discharge to surface (or 

marine) water bodies, the final release to the environment was then corrected to account for 

removal of individual compounds occurring during leachate treatment in wastewater treatment 

plant. An overview of inventory data on leaching during deposition of SR in Danish landfill and 

subsequent treatment of leachate at wastewater treatment plant is provided in Table 39. The 

uncertainty related to the composition of leachate is provided in Table 40, as estimated by Hansen 

et al. (2011b). 
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Table 39 – Leaching of individual substances during deposition of SR in Danish landfill and 
removal during leachate treatment in wastewater treatment plant (from Møller et al., 2014). 

 kg/kgSR % of leachate content 

Total-N 0,000452 9,80% 

Total-P 5,48*10-6 9,00% 

𝐶𝑙− 0,000985 100,00% 

𝐹− 4,02*10-6 14% 

𝑆𝑂4
2− 2,18*10-5 14% 

𝐻𝐶𝑂3
− 0,007252 14% 

NVOC (DOC) 0,00116 14% 

𝑆 − 𝑆2− 6,64*10-7 14% 

Al 1,08*10-7 0,30% 

As 1,03*10-7 87,00% 

Ba 1,76*10-6 13,90% 

Ca 0,000527 92,10% 

Cd 7,14*10-11 13,90% 

Co 2,70*10-9 17,00% 

Cr (VI) 2,33*10-9 11,20% 

Cr (tot) 2,02*10-8 11,20% 

Cu 6,98*10-9 2,00% 

Fe 4,14*10-5 1,70% 

Hg 1,73*10-10 10,30% 

K 0,000451 94,30% 

Mg 0,000704 95,10% 

Mn 1,34*10-6 47,10% 

Mo 9,58*10-9 95,00% 

Na 0,000854 89,20% 

Ni 1,16*10-7 47,10% 

Pb 7,14*10-10 2,70% 

Sb 6,66*10-9 45,80% 

Se 2,33*10-9 14% 

Si 4,28*10-5 14% 

V 3,14*10-8 16,90% 

Zn 9,60*10-8 7,30% 

Benzene (sum) -3*10-7 30% 

PAH -6,00*10-11 29% 

PAH -6,00*10-11 29% 
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Table 40 – Estimated uncertainty of characteristic of leachate from SR disposed in landfill 
(taken from Hansen et al., 2011a). 

Parameter Data variation (%) 
𝐶𝑙− 60 
𝐹− 38 
𝑆𝑂4

2− 39 
Al 48 
As 16 
Ba 29 
Ca 39 
Cd 74 
Co 37 
Cr (total) 68 
Cu 23 
Fe 93 
Hg 131 
K 19 
Mg 26 
Mn 34 
Mo 31 
Na 44 
Ni 47 
Pb 71 
Sb 34 
Se 2 
Si 45 
V 68 
Zn 61 
DOC/NVOC 37 
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Appendix 6: LCI of co-combustion of SR in a cement kiln 

Data regarding co-combustion of SR in a cement kiln are not available in Denmark, as this option is 

currently non-existing. The inventory dataset has thus been developed based on literature 

information. In particular, Vermeulen et al. (2012) reviewed existing studies and provided for 

individual compounds ranges of emissions to air occurring from co-combustion of SR in a cement 

kiln. With regards to solid residues, it was considered that the inert part of SR (i.e. ash and metals) 

would end up in the clinker and thus no further modelling was included. 

 

Data on SR composition and emissions to air provided by Vermeulen et al. (2012) are reported in 

Table 41, together with the waste composition used.  The TCs to air (TCair) were calculated 

according as: 

 

𝑇𝐶𝑎𝑖𝑟 =
𝑂𝑢𝑡𝑝𝑢𝑡𝑎𝑖𝑟

𝐼𝑛𝑝𝑢𝑡𝑤𝑎𝑠𝑡𝑒
 

 

where Inputwaste is the content of a specific compound in the waste and Outputair is the emission of 

such compound to the atmosphere. Using a uniform distribution for Outputair (minimum and 

maximum showed in Table 41) and a lognormal distribution for Inputwaste (assuming average as the 

geometrical mean and mix/max as the 2.5/97.5% range Table 41), the TCair where computed 15ooo. 

The obtained results were characterized by a log-normal distribution, for which median and 

variance were calculated, as shown in Tabel 42. The fact that the TC for C is very close to 100% in 

Table 42 indicates that the calculation approach is correct, as all organic C contained in SR should 

be converted to CO2 during a complete combustion of the feedstock. However, as a TC >100% does 

not make sense from a physical point of view, it was decided to adopt a TC to air for C equal to 100% 

for the inventory modelling. The number of simulations was decided based on the following 

formula: 

 

𝜀 =
3𝜎

√𝑁
→ 𝑁 = (

3 × 𝜎

𝜀
)

2

= (
3 × 𝑠𝑡𝑑𝑒𝑣𝑝(𝑚𝑖𝑛, 𝑚𝑎𝑥, 𝑎𝑣𝑒𝑟𝑎𝑔𝑒(𝑚𝑖𝑛, 𝑚𝑎𝑥))

50
)

2

 

 

where ε is the error of the estimation (here assumed maximum 2%), σ is the deviation of the data 

and N the number of simulations. The value N was estimated for all individual compounds using 

data in Table 41, and a rounding of the maximum value (i.e. 14902) being then selected for running 

the simulation. 
Table 41 – Data regarding emissions to air and waste composition, as provided by Vermeulen et 
al. (2012). 

Compound Unit Air emission Waste composition 

  min max min max average 

C kg/tonSR 1.504  279 626 410 

N kg/tonSR   8.8 45 19 

S kg/tonSR 0.0990 0.2295 1.9 5.6 3.7 

As g/tonSR 2.97E-03 6.83E-03 1.2 70 30 

Cd g/tonSR 3.42E-03 1.45E+00 2 86 34 

Cr g/tonSR 1.40E-02 2.81E-02 17 7000 1120 

Cu g/tonSR 4.57E-01 1.97E+00 27 16,600 4910 

Hg g/tonSR 1.03E+00 2.02E+00 0.2 14 4.1 

Ni g/tonSR 7.34E-03 2.20E-01 54 4000 734 

Pb g/tonSR 3.92E-01 5.48E+00 94 7000 2610 

Zn g/tonSR 6.61E-01 3.61E+01 1430 14,100 8260 
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Table 42 – TCs (%) to air for co-combustion of SR in a cement kiln. 

 TCs (%) to air 

Compound median deviation 

C 102.0 257.8 

S 0.0397 0.1071 

As 0.0001 0.0003 

Cd 0.0172 0.0478 

Cr 0.0005 0.0013 

Cu 0.0273 0.0790 

Hg 0.0367 0.1038 

Ni 0.0022 0.0089 

Pb 0.0571 0.2195 

Zn 0.3730 1.2975 
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Appendix 7: Inventory datasets 

Inventory dataset for plastic recycling 

Inventory data for recycling of plastic are provided in Table 43 and Table 44, together with the 

related datasets used in the LCI modelling. The dataset is based on information retrieved from 

Franklin Associates (2011). 
Table 43 – Inventory of input of material and energy to the plastic recycling process. 

 Type Process Unit Amount 

 Water Water from Waterworks, Sweden, 2008 kg/kgww 0.02 

 Diesel Production and Combustion of Diesel Oil in Truck, EU2, 1998 kg/kgww 1.8e-4 

 Virgin HDPE* Polyethylene, HDPE, granulate, at plant, RER kg/kgww -0.93 

Electricity Marginal Electricity Consumption incl. Fuel Production, Coal, 
Energy Quality, DK, kWh, 2006 

kWh/kgww 0.49 

 Natural gas Natural Gas (prod + comb), <1 MW, kg, Denmark, 1990 kg/kgww 7.7e-3 

 NaOH Sodium hydroxide (NaOH), RER, ELCD, 1996 - corrected kg/kgww 0.025 

* Avoided production 

Table 44 – Inventory of emissions from plastic recycling process. 

Name Compartment Sub compartment Unit Amount 

BOD5 water surface water kg/kgww 1.9/1000 

Cd+ water surface water kg/kgww 6.1e-10 

CO2, fossil air unspecified kg/kgww 0.0036 

COD water surface water kg/kgww 0.021 

N water surface water kg/kgww 3e-6 

P water surface water kg/kgww 1e-6 

SO2 air unspecified kg/kgww 1.1e-6 

TOC water surface water kg/kgww 0.0064 

 

Inventory dataset for electricity and heat production 

Electricity 

Life Cycle Inventory and documentation for 1 kWh marginal Danish electricity “Marginal Electricity 

Consumption incl. Fuel Production, Coal, Energy Quality, DK, kWh, 2006” from EASETECH 

database. 

 

Technology  

The production of 1 kWh of electricity is calculated as an average of seven Danish power stations 

(six cogeneration plants and one plant that produces only electricity). These plants were identified 

as those plants that can regulate the electricity production according to market demand, i.e. they are 

the "marginal" power stations.  

 

Input  

Coal (primary fuel) and oil.  

 

Output  

1 kWh of electricity supplied to consumers. The LCI includes a loss of 2% in distribution.  

 

Process  

Coal and oil are used for energy production. Air emissions are included as well as solid waste 

fractions from the combustion process. Mining, processing and transportation of coal and oil are 

included in the LCI.  

 
Table 45 – Inventory dataset “electricity "Marginal Electricity Consumption incl. Fuel 
Production, Coal, Energy Quality, DK, kWh, 2006”. 
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Parameter Compartment 
Sub-
compartment 

Unit Amount 

As Air Unspecified kg 4.6e-09 

Cd Air Unspecified kg 3.5e-10 

CO2, fossil Air Unspecified kg 0.92 

CO, fossil Air Unspecified kg 9.9e-05 

Cr Air Unspecified kg 6.6e-09 

Cu Air Unspecified kg 4.4e-09 

Pb Air Unspecified kg 6.7e-09 

Hg Air Unspecified kg 9.2e-09 

Ni Air Unspecified kg 9,5e-09 

NOx Air Unspecified kg 0,000661 

N2O Air Unspecified kg 8.1e-06 

NMVOC Air Unspecified kg 1.3e-05 

Se Air Unspecified kg 6.3e-08 

SO2 Air Unspecified kg 2.2e-04 

Zn Air Unspecified kg 1.4e-08 

CH4, fossil Air Unspecified kg 1.3e-05 

PM, < 2.5 um Air Unspecified kg 3.5e-05 

Input     

Heavy fuel oil, EU-15, ELCD, 2003- corrected   kg 0.00493 

Hard coal, EU-27, ELCD, 2002 - corrected   kg 0.394 

 

Location  

Denmark  

Year  

2006 

 

Data Sources 

The data originate from a survey conducted by Energinet.dk and Dansk Standard, aiming at 

producing environmental declaration of the Danish electricity which is influenced by market 

demand, thus not for an average kWh. Data has since been updated from 2005 to 2007. 

Emissions of heavy metals are averages from three Danish CHP plants (Green Account 2006 for 

Esbjerg [2] , Asnæs (line 2 +5) [3] and Stigsnæs ( line 1 +2) [4]). 

 

Data Quality (dqi = good) 

Data were collected as an average of seven Danish installations but adjusted so that coal was the 

dominant fuel. This is because coal is the fuel that will be affected when the plant responds to 

market demand [1]. Heavy metal emissions are based on three power plants and are considered to 

be relatively well documented. 

 

Note 

Electricity is produced at six of the seven plants together with heat. Therefore, resource 

consumption, emissions, etc. are allocated between the two products. This is done in [1] based on 

energy quality, which is a method that allocates a relatively large proportion of resource 

consumption and emissions for electricity production. Emissions of heavy metals were allocated in 

a similar way. 

 

Referencer 

1. Behnke, K. (2006): Notat om deklaration af fremtidigt elforbrug, Energinet.dk, Denmark.  

2. DONG Energy (2007): Esbjergværket. Grønt regnskab 2006. 

3. DONG Energy (2007): Asnæsværket. Grønt regnskab 2006. 

4. DONG Energy (2007): Stigsnæsværket. Grønt regnskab 2006  

Heat 
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Life Cycle Inventory and documentation for 1 kWh marginal Danish heat “District Heating, 

marginal average, (DK), kWh, 2012” from EASETECH database. 
Table 46 - Inventory dataset “District Heating, marginal average, (DK), kWh, 2012” 

Emission Compartment Sub-compartment Unit Amount 

.CH4, fossil Air Unspecified kg 0,000175 

CO2, fossil Air Unspecified kg 0,15 

N2O Air Unspecified kg 5,76E-06 

PM Air Unspecified kg 0,000283 

NOx Air Unspecified kg 0,000407 

 

The LCI was prepared by Energistyrelsen (2011): ”Forudsætninger for samfundsøkonomiske 

analyser i energisektoren”, as described in Jakobsen et al. (2013), page 79-80. Fuel composition was 

22% wood, 21% natural gas, 20% waste, 16% coal, 8% straw, 7% oil and 5% biogas.  
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Appendix 8: Evaluation of the potential environmental impacts 

Characterized potential environmental impacts 

 
Figure 30 - Characterised potential non-toxic impacts from the treatment of 1 ton of SR in the 
four analysed scenarios (PE = person equivalent). 

 

 
Figure 31 - Characterised potential toxic impacts from the treatment of 1 ton of SR in the four 
analysed scenarios (PE = person equivalent). 
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Figure 32 - Characterised potential Resource Depletion from the treatment of 1 ton of SR in the 
four analysed scenarios (PE = person equivalent). 

 

 
Figure 33 – Characterised potential non-toxic impacts from the treatment of 1 ton of SR in the 
four analysed scenarios (PE = person equivalent), including min-max range. 
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Figure 34 - Characterised potential toxic impacts from the treatment of 1 ton of SR in the four 
analysed scenarios (PE = person equivalent), including min-max range. 

 

 
Figure 35 - Characterised potential Resource Depletion from the treatment of 1 ton of SR in the 
four analysed scenarios (PE = person equivalent), including min-max range. 
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Figure 36 - Characterised potential impacts from the treatment of 1 ton of SR in Scenario 1, 
disaggregated according to individual treatment processes (PE = person equivalent). 

 

 
Figure 37 - Characterised potential toxic impacts from the treatment of 1 ton of SR in Scenario 2, 
disaggregated according to individual treatment processes (PE = person equivalent). 
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Figure 38 - Characterised potential toxic impacts from treatment of 1 ton SR in Scenario 3, 
disaggregated according to individual treatment processes (PE = person equivalent). 

 

 
Figure 39 - Characterised potential toxic impacts from the treatment of 1 ton of SR in Scenario 4, 
disaggregated according to individual treatment processes (PE = person equivalent). 
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Figure 40 - Characterised potential non-toxic impacts from the treatment of 1 ton of SR in the 
four analysed scenarios modelled using alternative marginal electricity production (i.e. coal, 
natural gas and wind). (PE = person equivalent). 

 

 
Figure 41 - Characterised potential toxic impacts from the treatment of 1 ton of SR in the four 
analysed scenarios modelled using alternative marginal electricity production (i.e. coal, natural 
gas and wind). (PE = person equivalent). 
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Figure 42 – Characterised potential Resource Depletion from the treatment of 1 ton of SR in the 
four analysed scenarios modelled using alternative marginal electricity production (i.e. coal, 
natural gas and wind). (PE = person equivalent). 
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Figure 43 - Characterised potential Global Warming impacts from treatment of 1 ton SR in the 
four analysed scenarios, disaggregated according to individual material fractions (PE = person 
equivalent). 
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Appendix 9: Review report from Teknologisk Institut 
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Life cycle assessment of shredder residue management 

The present report includes a life cycle assessment (LCA) of the treatment of shredder residues in 

Denmark. The assessment compares the potential environmental impacts and depletion of abiotic 

resources in relation to four alternative scenarios, all including the sorting of recyclables and the 

management of residual material through thermal treatment and/or disposal in controlled landfills after 

biological stabilisation. 

 

The following can be concluded:  

- Diverting SR >4 mm from landfill provides benefits from an environmental perspective and 

should thus be supported. 

- Sorting and recycling metals, plastics and glass are beneficial to the environment and should 

thus be continued. Special focus should be given to increasing metal recovery, as this provides the 

greatest environmental benefits. 

- Incineration seems currently the best option for the treatment of >4 mm residues. 

- Pyrolysis seems to have worse energy efficiency but better downstream metal recovery (i.e. from 

the residues) than incineration. However, a clear conclusion could not be drawn, because results for 

pyrolysis were associated with significant uncertainty, owing to the lack of precise inventory data 

describing the process. Thus, any decision regarding the implementation of pyrolysis for treating >4 mm 

SR fractions should first be supported by pilot- to full-scale tests of the process, to deliver a better 

understanding thereof. 

 


