MILJØMINISTERIET

MILJØSTYRELSEN

Sammenligning af energiforbrug til køling i supermarkeder

Hans Jørgen Høgaard Knudsen Danmarks Tekniske Universitet

Miljøprojekt Nr. 931 2004

Miljøstyrelsen vil, når lejligheden gives, offentliggøre rapporter og indlæg vedrørende forsknings- og udviklingsprojekter inden for miljøsektoren, finansieret af Miljøstyrelsens undersøgelsesbevilling.

Det skal bemærkes, at en sådan offentliggørelse ikke nødvendigvis betyder, at det pågældende indlæg giver udtryk for Miljøstyrelsens synspunkter.

Offentliggørelsen betyder imidlertid, at Miljøstyrelsen finder, at indholdet udgør et væsentligt indlæg i debatten omkring den danske miljøpolitik.

Forord

Formålet med det foreliggende projekt der beskrives i denne rapport har været at udarbejde metoder til retvisende sammenligning af energiforbruget til køling i supermarkeder af forskellig størrelse og anlægsopbygning. Til grund for vurdering af metodernes egnethed er foretaget måling på fire supermarkeder.

Projektet er gennemført i samarbejde med Danfoss A/S, Findan A/S, ISO A/S, Institut for Produktudvikling (IPU) samt York Refrigeration A/S med økonomisk støtte fra Miljøstyrelsens Program for renere produkter med undertegnede som projektleder.

Konklusionerne i denne rapport er alene undertegnede ansvarlig for.

Lyngby den 18. marts 2004

Hans Jørgen Høgaard Knudsen

Resume

Formålet med det her omtalte projekt har været at sammenligne energiforbruget til køling i fire supermarkeder af sammenlignelig størrelse men med forskellig opbygning af køleanlægget. To af supermarkederne har nyudviklede kaskadeanlæg med CO_2 i lavtemperaturkredsen og R404A i højtemperaturkredsen og de to andre supermarkeder har konventionelt opbyggede køleanlæg med R404A. Energiforbruget er blevet målt over en periode på 5 måneder (1/8 til 31/12 2003). Da de fire anlæg dels har forskellig størrelse dels arbejder med forskellig kondenseringstemperatur på gund af varmegenvinding kan det målte energiforbrug ikke sammenlignes direkte. Der beregnes derfor et energiforbrug for et fiktivt supermarked baseret på de målte forbrug korriget til en specificeret kondenseringstemperatur.

Der er anvendt to modeller til beregning af et sammenligneligt energiforbrug. Den første model er baseret på en skalering af energiforbruget idet der som skaleringsfaktor er benyttet forholdet mellem det nominelle energiforbrug for den valgte reference butik og det nominelle energiforbrug for den aktuelle butik. Det nominelle behov er beregnet på grundlag af butikkens specifikation af forbrug i køle-og frostgondoler, kølereoler samt køle- og frostrum. Den anden model er baseret på en påtrykt belastning på henholdsvis køl og frost. Den påtrykte belastning er baseret på målingerne for måleperioden. På grundlag af disse målinger er opstillet relative belastningsprofiler. Det relative belastningsprofil udtrykker det øjeblikkelige kuldebehov som procent af det maksimale kuldebehov i hele måleperioden. For referenceanlægget er benyttet en maksimal belastning på kølesiden på 110 kW og en maksimal belastning på frostsiden på 40 kW. Endvidere er anlæggenes middel COP (forholdet mellem leveret kuldeydelse og forbrugt energi) i måleperioden beregnet.

Baseret på en skalering er energiforbruget for kaskadeanlæggene inklusiv energiforbrug til cirkulationspumpe ca. 2/3 af energiforbruget for de konventionelle anlæg. Men denne metode må imidlertid forkastes da den beregnede køleydelse for referenceanlægget afhænger af hvilket anlæg der er anvendt til beregning af køleydelsen. Årsagen hertil er metodens store følsomhed over for de nominelle data.

Energiforbruget beregnet på grundlag af et reference belastningsprofil er, inden for måleusikkerheden, ens for de to kaskadeanlæg og det ene af de konventionelle anlæg. De sidste konventionelle anlæg har et væsentligt større energiforbrug, hvilket må tilskrives den valgte kompressorbestykning.

Samme resultat fås ved af anvende belastningsprofilet sammen med middel COP for måleperioden.

For kaskadeanlæggene er energiforbruget til cirkulationspumpen ca. 10% af det totale energiforbrug. Det vil være muligt at reducere energiforbruget til cirkulationspumpen da den kører ureguleret dvs. med maksimalt flow uanset det øjeblikkelige behov.

Den endelige konklusion er, at kaskadeanlæggene har samme energiforbrug som et veldimensioneret konventionelt anlæg og det vil være muligt at reducere energiforbruget ved regulering af cirkulationspumpen.

Summary

The aim of the project presented in this report has been to compare the energy consumption for refrigeration in four supermarkets of approximately the same size but with different layout of the refrigeration system. Two of the supermarkets have newly developed cascade refrigeration systems with CO₂ in the low-temperature circuit and R404A in the high-temperature circuit. All the display cases were cooled by CO₂ with dry-expansion evaporators in the freezers and flooded evaporators in the refrigerators. The other two supermarkets have conventional multiplex refrigeration systems with R404A as refrigerant and dry-expansion evaporators in all display cases. The energy consumption was measured during a period of five month (1/8 - 31/12)2003). The energy consumption of the four systems cannot be compared directly because the systems were not the same size and their condensation temperatures were different due to heat recovery. Therefore, a reference supermarket is used, where the energy consumption is based on the measured energy consumptions corrected to the same reference condensations temperature.

Two models have been used to estimate the corrected energy consumption. The first model is based on a simple scaling factor calculated as the ratio between the nominal cooling capacity of the reference supermarket and the nominal cooling capacity of the actual supermarket. The nominal cooling capacity is calculated from the specification of the cooling needs for the individual display cases. The second model uses a prescribed load profile for the low and high temperature circuits of the refrigeration system. The load profile used is based on the measured load profile of one of the supermarkets during the period of measurement. The measured load profile is expressed as the ratio between the measured load and the highest load in the period of measurement. For the reference system the maximum high temperature load is set at 110 kW and the maximum low temperature load is set at 40 kW. The mean COP (the ratio between the cooling load and the power supplied) has been calculated for the whole period of measurement.

According to the first model (scaling factor), the energy consumption of the cascade plants, including the pumping power for the flooded evaporators, is 2/3 of the energy consumption of the conventional multiplex system. This model has later been rejected because the calculated cooling load for the reference supermarket depends on which supermarket is used as a basis for the calculation, whereas only the power consumption of the reference supermarket should depend on which supermarket is used as a basis. The differences in cooling loads seem to be caused by a very high dependency of the nominal data.

According to the second model (load profile), the calculated energy consumptions of the two cascade systems and one of the multiplex systems were the same within the degree of measuring accuracy. The last multiplex system has a much higher energy consumption and the reason for this must be a lower efficiency of the compressors used. For the cascade systems the energy consumption of the circulation pump for the flooded evaporators is approximately 10% of the total energy consumption. It is possible to reduce the energy consumption of the circulation pump by adjusting the capacity of the pump to the needs. At present the pump is running at full capacity independently of the actual need.

The over-all conclusion from the comparisons is that the new cascade systems have an energy consumption equal the energy consumption of a well dimensioned conventional refrigeration system and that it is possible to lower the energy consumption of the cascade system by implementing a control strategy for the circulation pump.

Indhold

FORORD	Ι		
RESUME	III		
SUMMARY	v		
INDHOLD	v		
NOMENKLATUR	IX		
1 INDLEDNING	1		
2 PRINCIPIEL OPBYGNING AF KØLEANLÆGGENE	3		
 2.1 KONVENTIONELT OPBYGGEDE ANLÆG 2.2 KASKADEANLÆG 2.3 PRINCIPIEL LAYOUT AF KØLEDEL AF BUTIK 2.4 ANLÆGSSTØRRELSER 	3 3 4 5		
3 MÅLEPROGRAM.	7		
4 DATABEHANDLING	9		
 4.1 ANVENDTE DATA 4.2 BEREGNING AF KULDEYDELSE OG EFFEKTOPTAG 4.3 BEREGNING AF SAMMENLIGNELIG ENERGIFORBRUG 	9 9 9		
5 SAMMENLIGNING	11		
5.1MÅLT OG BEREGNET ENERGIFORBRUG115.2MIDDEL EFFEKTFAKTOR OG CARNOT VIRKNINGSGRAD115.3FORBRUG PÅ GRUNDLAG AF MIDDEL EFFEKTFAKTOR125.4FORBRUG PÅ GRUNDLAG AF REFERENCEBUTIK OG AKTUEL COP135.4.1Specificeret møbel-/rumdata145.4.2Specificeret belastningsprofil18			
6 KONKLUSION	23		
7 YDERLIGERE ANALYSER	25		
8 PROJEKTORGANSTATION	27		
Appendix A Appendix B Appendix C Appendix E Appendix F	29 45 47 57 63		

Nomenklatur

COP	Coefficient Of Performance
COPK	COP for kølekreds
COP _{K,kor}	COP for kølekreds korrigeret til kondenseringstemperatur 30°C
COP _F	COP for frostkreds
$COP_{F,kor}$	COP for frostkreds korrigeret til kondenseringstemperatur 30°C
COP _{F,tot}	COP for frostkreds beregnet som kaskadeanlæg
Eta _{Carnot,K}	Carnot virkningsgrad for kølekreds
Eta _{Carnot,F}	Carnot virkningsgrad for frostkreds
Eta _{Carnot,F,tot}	Carnot virkningsgrad for frostkreds beregnet som kaskadeanlæg
Etotal(korrigeret)	Energiforbrug korrigeret til kondenseringstemperatur 30°C
Etotal (målt)	Energiforbrug målt
Pc	Kondenseringstryk
P ₀	Fordampningstryk
T _c	Kondenseringstemperatur
To	Fordampningstemperarur
η_v	Volumetrisk virkningsgrad
η _{is}	Isentropisk virkningsgrad

1 Indledning

I forbindelse med udfasning af CFC- og HCFC-kølemidlerne diskuteres hvorvidt kølemidlet i nye anlæg skal være HFC eller naturlige kølemidler. Problemet med HFC-kølemidlerne er deres meget høje drivhuseffekt (GWP) som i fremtiden kan føre til at også denne gruppe af kølemidler må udfases (I Danmark er gennemført forbud mod anvendelse i små og store anlæg fra 1. januar 2007). De umiddelbare anvendelige naturlige kølemidler har ikke denne ulempe men er ofte enten brændbare (HC-kølemidler) eller giftige (Ammoniak). Et alternativ der hverken er brændbart eller er klassificeret som giftigt er kuldioxid (CO₂). CO₂ har dog et par ulemper. For det første er den kritiske tempertur meget lav (31°C), hvilket har en negativ indvirkning på effektiviteten ved 1.trins drift, når omgivelsestemperaturer er tæt på eller over den kritiske temperatur. For det andet er trippelpunktstrykket over atmosfæretrykket (5,18 bar) hvilket stiller specielle krav til montering af sikkerhedsventiler, da der ved afblæsning af væske dannes fast CO₂. En anlægsudformning der ikke lider under den første ulempe er et kaskadeanlæg med CO, i lavtemperaturdelen og f.eks. propan eller propylen i højtemperaturkredsen. Højtemperaturkredsen kan bygges meget kompakt med en meget lille kølemiddelfyldning, hvilket kan minimere brændfaren.

I den foreliggende undersøgelse er sammenlignet energiforbrugt for 2 konventionelt opbyggede anlæg med R404A med energiforbruget for 2 nyudviklede kaskadeanlæg med CO_2 i lavtemperaturkredsen og R404A i højtemperaturkredsen. På grund af placeringen har det ikke været muligt at få godkendt propan/propylen i højtemperaturkredsen, hvorfor der er anvendt R404A. R404A fyldningen er dog meget lille sammenlignet med de konventionelt opbyggede anlæg.

2 Principiel opbygning af køleanlæggene

2.1 Konventionelt opbyggede anlæg

Anlæggene ISO-2 og ISO-4 er begge konventionelt opbyggede anlæg af parallel anlægstypen med separate kredse for henholdsvis køl og frost samt 1trins kompression. Der anvendes R404A som kølemiddel. Der er direkte tørekspansions fordampning i køle- og frostmøblerne og kondensering sker i luftkølede kondensatorer monteret på bygningens tag. ISO-4 er forsynet med en varmeveksler mellem køl- og frostkredsen, men den har ikke været i drift i måleperioden. Endvidere er der i dette anlæg monteret varmevekslere til varmegenvinding af overhednings /kondenseringsvarmen. Figur 2.1 viser den principielle opbygning.

2.2 Kaskadeanlæg

Anlæggene ISO-1 og ISO-3 er de nyudviklede kaskadeanlæg. Der anvendes CO_2 i både køle- og frostmøbler. I frostmøblerne anvendes tørekspansion. Den fordampede CO_2 komprimeres til trykket i kølekredsen ved hjælp af CO_2 kompressorer. I kølemøblerne anvendes oversvømmede fordampere med pumpecirkulation. CO_2 dampen kondenseres i kaskadekøleren ved hjælp af fordampende R404A. R404A komprimeres til kondenseringstrykket ved hjælp af kompressorer og R404A dampen kondenseres i en kølevandskølet kondensator. Kølevandet afgiver kondenseringsvarmen til den omgivende luft i tørkølere placeret på taget. ISO-1 er forsynet med varmegevindingsvarmeveksler, der leverer al varmen til butikken. Figur 2.2 viser den principielle opbygning af kaskade anlægget.

Figur 2.1. Principiel opbygning af ISOI-2 og ISO-4 anlæggene

Figur 2.2. Principiel opbygning af ISO-1 og ISO-3 anlæggene.

2.3 Principiel layout af køledel af butik

Alle fire anlæg har i princippet samme opbygning med hensyn til placering af kølemøblerne i butikken. Nedenstående Figur 2.3 illustrerer den principielle opbygning.

Figur 2.3. Principiel placerings af kølemøbler i butik

2.4 Anlægsstørrelser

	Frost-	Køle-	Køle-	Eks.	Køle-	Køle-	Frost-
	gondol	gondol	reol	disk	øer	rum	rum
	Omk-	Om-	Læng-	Læng-	Om-	Volu-	Volu-
	reds	kreds	de	de	kreds	men	men
	m	m	m	m	m	m ³	m ³
ISO-1	56.8	42.1	50.0	12.5		375.0	104.5
ISO-2	43.2	55.7	17.5	11.3	20.7	257.3	57.7
ISO-3	58.0	40.2	36.3	10.0		340.5	128.3
ISO-4	45.8	63.7	35.6	15.0	20.7	407.6	94.3

De fire anlæg størrelse fremgår af nedenstående Tabel 2.1).

Tabel 2.1. Anlægsstørrelser

Af Tabel 2.1 ses at de fire anlæg er af forskellig størrelse dels absolut dels med hensyn til forholdet mellem de forskellige kølekategorier (Frost-, Køle-gondol, Kølereol, Køleøer, Køle-og Frost-rum).

Alle anlæg er forsynet med pulsbredde modulerede reguleringsventiler på alle fordampere.

3 Måleprogram.

For de fire anlæg måles effektoptag, indkoblet kompressor- og kondensatorkapacitet, trykkene på kompressorernes suge- og trykside, samt indsprøjtningsventilernes åbningsgrad, overhedningstemperatur ved fordamperafgang samt lufttemperatur for alle fordampere. Endvidere måles ude- og indetemperaturerne samt den relative fugtighed i butikkerne.

4 Databehandling

4.1 Anvendte data

Data opsamles for de fleste målepunkters vedkommende med 2 minutters interval. På grund af den store datamængde reduceres de målte værdier til timemiddelværdier før de endelige beregninger foretages.

I Appendix F er vist udskrifter for de beregnede data for de fire anlæg.

4.2 Beregning af kuldeydelse og effektoptag

På grundlag af kompressorfabrikanternes data for de anvendte kompressorer er opstillet udtryk til bestemmelse af volumetrisk og isentropisk virkningsgrad som funktion af trykforholdet over kompressoren samt kondenseringstemperaturen.

$$\boldsymbol{h}_{v} = f_{v} \left(\begin{array}{c} P_{c} \\ P_{0} \end{array}, T_{c} \right); \qquad \boldsymbol{h}_{is} = f_{is} \left(\begin{array}{c} P_{c} \\ P_{0} \end{array}, T_{c} \right)$$

Med de opstillede udtryk gengives fabrikanternes data i størstedelen af temperaturområdet bedre end 1% for kuldeydelse og bedre end 2% for effektoptag.

I Appendix A er angivet nærmere oplysningerne angående kompressorene.

På grundlag af de målte tryk og temperaturer samt indkoblet kompressorkapacitet kan ved anvendelse af ovenstående udtryk beregnes en kuldeydelse og en optagen effekt (Se Appendix E). Den på grundlag af kompressordata beregnede effekt sammenlignes med den målte effekt for at få en vurdering af den opstillede models nøjagtighed.

Endvidere beregnes den aktuelle effektfaktor (COP) samt Carnot effektiviteten. Da kondenseringstrykket kan være påvirket af varmegenvinding er også beregnet en korrigeret COP svarende til en kondenseringstemperatur på 30°C ved benyttelse af ovenstående kompressormodeller.

4.3 Beregning af sammenlignelig energiforbrug

Da de fire anlæg har forskellig størrelse kan det målte energiforbrug ikke sammenlignes direkte. Der beregnes derfor et energiforbrug for et fiktivt supermarked med en referencebelastning men med de målte COP'er. De således beregnede energiforbrug er direkte sammenlignelige, idet der til det beregnede energiforbrug for kompressorerne for henholdsvis ISO-1 og ISO-3 er adderet den målte pumpeenergi.

Energiforbruget beregnes dels for et døgn dels for hele måleperioden ved at summere det målte energiforbrug pr. time. Energiforbruget pr. time beregnet på grundlag af timemiddelværdier for effektoptaget. Der er anvendt to modeller til beregning af et sammenligneligt energiforbrug. Den første model er baseret på en reference butik med en given specifikation af køle-og frostgondoler, kølereoler samt køle- og frostrum. En nærmere beskrivelse er givet i Appendix D. Den anden model er baseret på en påtrykt belastning på henholdsvis køl og frost. Den påtrykte belastning er baseret på malingerne for perioden 1/8 - 31/12 2003. På grundlag af disse malinger er opstillet relativt belastningsprofiler for de fire anlæg. Det relative belastningsprofil udtrykker det øjeblikkelige kuldebehov som procent af det maksimale kuldebehov i hele måleperioden. De relative belastningsprofiler for de fire anlæg er næstens ens, hvilket fremgår af Figur 4.1, som viser den relative belastning for køl for perioden 1/9 til 7/9 2003. I Appendix C er vist de relative belastningsprofiler for hele maleperioden samt for køl og frost i perioden 1/9 til 7/9 2004. Til de videre beregninger er anvendt det relative belastningsprofil for ISO-2 anlægget. For reference anlægget anlæg er benyttet en maksimal belastning på kølesiden på 110 kW og en maksimal belastning på frostsiden på 40 kW. Nærmere beskrivelse af metoden er givet i Appendix E.

Figur 4.1. Relativt belastningsprofil for køl.

5 Sammenligning

5.1 Målt og beregnet energiforbrug

Desværre har det vist sig at de malte energiforbrug for ISO-2 og ISO-4 ikke direkte kan sammenlignes med det beregnede energiforbrug, da det malte energiforbrug inkluderer forbruget til kantvarme, ventilatorer og afrimning. Der er derfor foretaget en korrektion for disse belastninger. På grundlag af malingerne er estimeret antal afrimninger pr. døgn samt varighed af afrimningen. Idet varmeleget forudsættes indkoblet i hele afrimningstiden er energiforbrug da bestemt. Endvidere er den ene energimaler for ISO-4 ophørt med at virke, men i februar 2004 har begge effektmålere været i funktion så februar kan benyttes til at sammenligne det beregnede og det målte energiforbrug. Afvigelsen mellem det saledes korrigerede energiforbrug pr. døgn og det beregnede energiforbrug pr. døgn er for februar mindre end 11% for ISO-2 medens ISO-4 giver en afvigelse på ca. 40% når der korrigeres for kantvarme m.m. Uden korrektion er afvigelsen mindre end 10%. For ISO-1 og ISO-3 er de malte forbrug direkte sammenlignelige med de beregnede forbrug når blot cirkulationspumpens ydelse adderes til det beregnede forbrug. For ISO-1 fås en afvigelse mellem målt og beregnet forbrug på ca. 20%, medens der er en kalibreringsfejl i forbindelse med energimalingen på ISO-3, da det målte energiforbrug er meget større end den installerede kompressoreffekt. I Februar 2004 blev forsøgt indlagt korrekt kalibreringsfaktor, men nu er det malte energiforbrug væsentligt lavere end det beregnede. Der bør derfor fortages en rekalibrering af denne maler.

(NB! Når der i det følgende tales om målt forbrug er det forbruget beregnet på grundlag af indkoblet kompressorkapacitet samt kompressorerne driftsparametre)

5.2 Middel effektfaktor og Carnot virkningsgrad

For perioden 1/8 til 31/12 2003 er beregnet anlæggenes middeleffektfaktor og Carnot virkningsgrad baseret på kondenserings- og fordampningstemperatur og uden hensyntagen til cirkulationspumpens forbrug. Resutatet fremgår af nedenstående Tabel 5.1.

	ISO-1	ISO-2	ISO-3	ISO-4
COPK	3,49	2,53	4,20	2,55
COP _{K,kor}	3,42	3,12	3,41	2,84
COP _F		1,10		1,10
COP _{F,kor}		1,30		1,30
COP _{F,tot}	1,87		1,81	
Eta _{Carnot,K}	0,49	0,52	0,53	0,47
Eta _{Carnot;F}	0,48	0,42	0,45	0,33
Eta _{Carnot,F,tot}	0.46		0,39	

Tabel 5.1. Middelværdier for COP og Carnot effektivitet.

I ovenstående tabel angiver indeks K kølekredsen, indeks F frostkredsen. indeks kor angiver at middelværdien er beregnet for en fastholdt kondenseringstemperatur på 30°C. For kaskadeanlæggene angiver indeks tot, at dataene for frostkredsen for kaskadeanlæggene er omregnet til en total COP/Carnot virkningsgrad for frostkredsen, idet frostkredsens andel af forbruget i højtemperaturkredsen er adderet til frostkredsens forbrug. Dette svarer til at have et kaskadeanlæg alene til frost.

Af Tabel 5.1 ses, at kaskadeanlæggene har en højere COP end de to andre anlæg. Endvidere ses, at anlæggene har næsten samme Carnot virkningsgrad i kølekredsen medens ISO-4 har en væsentlig lavere Carnot virkningsgrad i frostkredsen.

5.3 Forbrug på grundlag af middel effektfaktor

På grundlag af ovenstående middelværdier er beregnet et energiforbrug i måleperioden for det fiktive anlæg med referenceprofilet som belastning. Resultatet fremgår af nedenstående Tabel 5.2.

I Tabel 5.2 angiver (korrigeret) at energiforbruget er beregnet på grundlag af middelværdien for $\text{COP}_{_{kor}}$ med fast kondenseringstemperatur på 30 °C meden (målt) angiver at energiforbruget er beregnet på grundlag af målt middelværdi for COP med den målte kondenseringstemperatur.

Samlet forbrug:			
ISO-1: Etotal (korrigeret)	94555 kWh	heraf pumpeforbrug	9440 kWh
Etotal (målt)	93572 kWh	heraf pumpeforbrug	9440 kWh
ISO-2: Etotal (korrigeret)	93492 kWh		
Etotal (målt)	113799 kWb		
ISO-3: Etotal (korrigeret)	94290 kWh	heraf pumpeforbrug	7812 kWh
Etotal (målt)	85160 kWh	heraf pumpeforbrug	7812 kWh
ISO-4: Etotal (korrigeret)	111158 kWh		
Etotal (målt)	127195 kWh		

Tabel 5.2. Energiforbrug på grundlag af middel effektfaktor for perioden 1/8-31/12 2003

Som det ses af Tabel 5.2 har ISO-1, ISO-2 og ISO-3 næsten samme korrigeret forbrug medens ISO-4 har et næsten 20% højere forbrug. Med den målte middelværdi for COP har ISO-3 det laveste forbrug, ISO-1 har et ca. 10% højere forbrug, ISO-2 et ca.30% højere forbrug medens ISO-4 har et ca.50% højere forbrug end ISO-3. Det fremgår heraf umiddelbart, at kondenseringstemperaturen har en væsentlig indflydelse på energiforbruget. I middel har ISO-1 arbejdet med en kondenseringstemperatur på 28 °C, ISO-2 med en temperatur på 38 °C, ISO-3 med en temperatur på 28 °C medens ISO-4 i den første halvdel af måleperioden har arbejdet med en kondenseringstemperatur på 32 °C og i den sidste halvdel med en temperatur på 38 °C. Denne ændring i kondenseringstemperaturen skyldes hensynet til varmebehovet, der dækkes ved hjælp af varmegenvinding fra kondensatorerne. Figur 5.1 viser forløbet af kondenseringstemperaturen i måleperioden.

Figur 5.1. Kondenserings- og fordampningstemperaturer.

Selv om ISO-1 og ISO-3 har indirekte luftkøling via en kølevandskreds har de lavere kondenseringstemperatur end anlæggene med direkte luftkølede kondensatorer, ISO-2 og ISO-4. Da kaskadeanlæggene anvender samme kølemiddel i højtemperaturkredsen som de klassisk opbyggede anlæg må konkluderes, at kaskadeanlæggene er forsynet med mere effektive/større varmeflader.

Af Figur 5.1 fremgår også, at kaskadeanlæggene arbejder med en fordampningstemperatur på -8 °C i kølekredsen hvor de to andre anlæg arbejder med en fordampningstemperatur på –15 °C. For frostkredsen haves tilsvarende fordampningstemperatur i kaskadeanlæggene på -30 °C medens de andre anlæg arbejder med en fordampningstemperatur på -35 °C. Da fordamperne efter det oplyste er ens i de fire anlæg kan den højere temperatur i kaskadeanlæggene kun skyldes det anvendte kølemiddels varmeoverførende egenskaber. For kølekredsen kan en del af den højere fordampningstemperatur for ISO-1 og ISO-3 også tilskrives, at disse anlæg arbejder med oversvømmede fordampere i kølekredsen. Den højere fordampningstemperatur medfører en bedre COP men på grund af pumpernes energiforbrug elimineres denne fordel. Som det fremgår af Tabel 5.2 udgør forbruget til cirkulationspumperne ca. 10% af det samlede energiforbrug. Det skal dog her også tilføjes, at cirkulationspumperne arbejder uregulerede dvs. på fuld kapacitet selv ved lav belastning. En formindskelse af energiforbruget kan forventes ved en kapacitetsregulering af cirkulationspumpen.

5.4 Forbrug på grundlag af referencebutik og aktuel COP

I forrige afsnit er anvendt middelbetragtning til vurdering af de fire anlæg. På grund af de varierende driftsbetingelser kan dette giver et forkert billede af de faktiske forhold, hvorfor der er gennemført beregning for referenceanlægget med den målte aktuelle COP. Der er benyttet to metoder til at fastlægge belastningen for referenceanlægget. I den første metode skaleres det målte forbrug på grundlag af en skaleringsfaktor baseret på de aktuelle specificerede møbel-/rumdata og i den anden metode er belastningen bestem på grundlag af en maksimal belastning og et reference belastningsprofil.

5.4.1 Specificeret møbel-/rumdata

På grundlag af målte værdier, midlet på timebasis, for fordampnings- og kondenseringstryk, indsugningstemperaturen til kompressorerne samt indkoblet kompressorkapacitet beregnes energiforbruget på grundlag af kompressorfabrikantens data. Forbruget korrigeres til et forbrug ved en given kondenseringstemperatur (30°C) for at eliminere indflydelsen fra forskellig driftsstrategi på kondensatorsiden (f.eks. varmegenvinding).

For de enkelte supermarkeder er opgivet data for de enkelte møbler og køle /frostrums nominelle kølebehov. Disse data er omregnet til et nominelt forbrug pr. m møbel og et forbrug pr. m³ rum. For gondolerne er forbruget beregnet pr. m omkreds dels for at medtage endegondolerne dels for at tage hensyn til, at en del af gondolerne er dobbeltgondoler.

Da det nominelle forbrug pr. m møbel og pr. m³ rum er forskellig for de enkelte supermarkeder (de nyeste supermarkeder har et lavere nominelt forbrug i møblerne) er beregnet en middelværdier for de fire supermarkeder. Der defineres et reference supermarked med en specificeret længde frostgondol (50m), kølegondol (50m), kølereol (35m), ekspeditionsdisk(12m), kølerum (350m³) samt frostrum (100m³). Det således valgte reference supermarked svaret til middelværdien for de fire supermarkederne.

Energiforbruget for de enkelte supermarkeder omregnes til et forbrug for reference supermarkedet idet det antages, at forholdet mellem det nominelle forbrug og det reelle forbrug for den aktuelle butik og for reference butikken er det samme svarende til at fordampningstemperaturen for reference supermarkedet svarer til den målte fordampningstemperatur.

For kaskadeanlæggene bestemmes først referencebelastningerne for henholdsvis frost og køl. Belastningen på højtemperatur anlægget er summen af belastningen for frost plus lavtemperatur kompressorernes arbejde plus belastningen fra kølemøblerne.

Den detaljerede beskrivelse af denne metode findes i Appendix D.

Figurer 5.2 viser en sammenligning af energiforbruget for september 2003, men forløbet er det samme for den øvrige måleperiode.

Figur 5.2 Energiforbrug for referencebutik på grundlag af målt energiforbrug (måned)

Figur 5.3 viser en sammenligning af energiforbruget for et enkelt døgn (1. september 2003)

Figur 5.3. Energiforbrug for referencebutik på grundlag af målt energiforbrug (døgn).

Af Figur 5.2 og Figur 5.3 fremgår, at energiforbruget for reference butikken med data fra ISO-1 og ISO-3 er ca. 2/3 af energiforbruget for reference butikken med data fra ISO-2 og ISO-4. En kritisk gennemgang af de beregnede energiforbrug for reference butikken viser imidlertid, at der ikke er samme belastning for reference butikken med data fra de fire supermarkeder, hvilket er vist i Figur 5.4 (belastning på køl).

ISO-1 og ISO-3 har en belastning på køl der er ca. 2/3 af belastningen på køl for ISO-2 og ISO-4, medens kun ISO-3 adskiller sig med hensyn til belastningen på frost, hvor ISO-1, ISO-2 og ISO-4 ligger væsentligt over ISO-3, Figur 5.5. Årsagen til denne variation i belastning kan delvis forklares med forskellig relativ belastning, q_{målt}/q_{nominelt}, som vist i Figur 5.6 og Figur 5.7. Af disse figurer fremgår at specielt ISO-4 har et belastningsprofil der afviger væsentligt fra de tre øvrige. Årsagen til denne afvigelse må skyldes, at skaleringsfaktoren, den nominelle belastning, er for usikker.

Det må konkluderes, at en "simpel" skalering baseret på nominelt kølebehov ikke giver et retvisende billede af supermarkedernes energiforbrug på grund af usikkerhed på det nominelle kølebehov.

Figur 5.4. Kølebelastning for referencebutik på grundlag af målt belastning (døgn).

Figur 5.5. Frostbelastning for referencebutik på grundlag af målt belastning (døgn).

Figur 5.6. Relativ belastning for køl (døgn).

Figur 5.7. Relativ belastning for frost (døgn).

5.4.2 Specificeret belastningsprofil

Som nævnt i afsnit 4.3 er genereret relative belastningsprofiler baseret på målingene for perioden 1/8 – 31/12 2003. Det relative belastningsprofil udtrykker det øjeblikkelige kuldebehov som procent af det maksimale kuldebehov i hele måleperioden. Til beregningerne er anvendt de relative belastningsprofiler for ISO-2 anlægget. For det referenceanlægget er benyttet en maksimal belastning på kølesiden på 110 kW og en maksimal belastning på frostsiden på 40 kW.

Den detaljerede beskrivelse af denne metode findes i Appendix E.

Denne metoder svarer til metoden omtalt i afsnit 5.3 men her anvendes den aktuelle COP i stedet for en middel COP sammen med belastningsprofilet for at bestemme energiforbruget.

Figur 5.8 og Figur 5.9 viser henholdsvis referencebelastningen og det tilsvarende totale effektoptag baseret på timemiddelværdier (pumpeforbrug inkluderet) for referenceanlægget over en uge med høj belastning. Tilsvarende viser Figur 5.10 og Figur 5.11 belastning og effektoptag for en uge med lav belastning. Af disse Figur 5.9 og Figur 5.11 fremgår at for samme belastningsprofil har ISO-1, ISO-2 og ISO-3 næsten samme effektoptag, medens ISO-4 har et væsentligt højere effektoptag. Årsagen til det væsentlige højere effektoptag for ISO-4 må tilskrives den lavere Carnot virkningsgrad for kompressorerne.

Det skal anføres, at alle butikkerne har sammenlignelige ydre driftsbetingelse: ude og inde temperatur samt fugtighed i butikken, se Figur 5.12 og Figur 5.13.

Figur 5.8. Referencebelastning ved høj belastning.

Figur 5.12. Fugt og temperatur forhold ved høj belastning.

Figur 5.13. Fugt og temperatur forhold ved lav belastning.

6 Konklusion

På grundlag af de foranstående resultater kan konkluderes at kaskadeanlæggene har samme energiforbrug som et veldimensioneret klassisk opbygget anlæg.

For kaskadeanlæggene kan et mindre energiforbrug forventes ved en forbedret regulering af cirkulationspumperne.

Endvidere kan kaskadeanlæggenes energiforbruget reduceres ved en forbedret algoritme til indkobling af eleffekten i forbindelse med afrimning af de oversvømmede fordampere på køl. Afrimningen har i måleperioden fungeret på samme måde som med tørre fordampere, men ved afrimningens start har de oversvømmede fordampere en større væskefyldning end de tørre fordampere. Man kan derfor spare energi dels et direkte elforbrug til afrimningsvarmelegemerne dels et indirekte forbrug på kompressorerne. Det forøgede forbrug til kompressorerne skyldes, at væsken i fordamperne fordampes ved anvendelse af varmestavene og ikke som følge af nyttig kuldeydelse i fordamperen.
7 Yderligere analyser

De indsamlede data vil blive yderligere analyseret for undersøge om de højere fordampningstemperaturer har en positiv påvirkning på tilrimning af fordamperne.

8 Projektorganstation

Projektet er gennemført i samarbejde med Danfoss A/S, Findan A/S, ISO A/S, Institut for Produktudvikling (IPU) samt York Refrigeration A/S med økonomisk støtte fra Miljøstyrelsens Program for renere produkter. Firmaerne takkes for medvirken til projektet gennemførelse.

En speciel tak for aktiv medvirken skal rettet til følgende personer::

Christian Bendtsen, Danfoss A/S Alexander Cohr Pachai, York Refrigeration A/S Mortens Juel Skovrup, IPU

APPENDIX A

ISO-1 Kaskadeanlæg.

Kompressorer:

Højtemperaturtrin: 5 stk Bitzer 6H-25.2Y. Kølemiddel: Lavtemperaturtrin: 3 stk Bitzer 2EC-4.2K. Kølemiddel:

Kølemiddel: R404A Kølemiddel: R744 (CO₂)

Virkningsgrader:

Bitzer 6H-25.2Y med R404A

Volumetrisk virkningsgrad

Etav=(avA+bvA*Tc)+(avB+bvB*Tc)*Phi med Tc: Kondenseringstemperatur i °C og Phi som trykforholdet Pc/P0 Konstanterne er fundet til nedenstående værdier: avA = 1.008248481 bvA= -0.001394396505 avB= - 0.03589897282 bvB = 0.000294799292

ISENTROPISK VIRKNINGSGRAD

Etals = (aisA+bisA*Tc)+(aisB+bisB*Tc)*Phi+(aisC+bisC*Tc) *Phi² med Tc: Kondenseringstemperatur i °C og Phi som trykforholdet Pc/P0 Konstanterne er fundet til nedenstående værdier: aisA = 0.5002052878 bisA = 0.002410386475aisB = 0.0406335594 bisB = -0.0005551792135aisC = -0.002661829944 bisC = 4.162626219E-0

Med de fundne konstanter gengives Bitzers data med bedre end 1.2% for kuldeydelsen og bedre end 3.7 % for kompressorens optagne effekt for - $40^{\circ}C$ <T0<- $5^{\circ}C$ og $30^{\circ}C$ <Tc< $50^{\circ}C$

Ved det aktuelle temperaturområde gengives dataene for kuldeydelsen bedre end 0.2% og for kompressorens optagne effekt bedre end 2.3%.

Bitzer 2EC-4.2K med R744

Volumetrisk virkningsgrad:

EtaV=ac(Tc)*(Phi-1.235)+0.9247 med Tc: Kondenseringstemperatur i °C og Phi som trykforholdet Pc/P0 Konstanten er fundet til nedenstående værdi: Ac=-0.111873903+0.0001737681367*Tc-6.613978021E-5*Tc*Tc

Isentropisk virkningsgrad:

Etals = A(T) + B(T)*Phi + C(T)*Phi*Phi								
A = aA+bA*T+cA*T*T								
aA = 0.7309844503	bA = 0.008370719891							
	cA = -0.0005993144145							
B = aB+bB*T+cB*T*T								
aB = -0.06575970538	bB = -0.002804107695							
	cB = 0.0005618800195							
C = aC+bC*T+cC*T*T								
aC = -0.001403356293	bC = -0.0004784304082							
	cC = -0.0001543907826							

Med de fundne konstanter gengives Bitzers data med bedre end 0.2% for kuldeydelsen og bedre end 0.6 % for kompressorens optagne effekt for . - $50^{\circ}C$ <To<- $30^{\circ}C$ og - $20^{\circ}C$ <Tc<- $5^{\circ}C$

T0	Tc	Qdata	Wdata	Qfit	Wfit	dQ	dW	η_v	η_{is}
°C	°C	W	W	W	W	%	%	-	-
-5	30	87900	23500	87867	22949	0.0	2.3	0.892	0.628
-10	30	72500	22150	72485	22159	0.0	-0.0	0.878	0.636
-15	30	59300	20560	59209	20833	0.2	-1.3	0.861	0.644
-20	30	47800	18830	47789	19106	0.0	-1.5	0.840	0.654
-25	30	38000	16940	38008	17105	-0.0	-1.0	0.813	0.663
-30	30	29700	14950	29674	14952	0.1	-0.0	0.779	0.671
-35	30	22650	12890	22618	12762	0.1	1.0	0.735	0.674
-40	30	16740	10810	16687	10647	0.3	1.5	0.678	0.668
-45	30	11850	8750	11742	8717	0.9	0.4	0.603	0.640
-5	40	74700	27200	74854	26831	-0.2	1.4	0.867	0.649
-10	40	61600	25180	61649	25189	-0.1	-0.0	0.851	0.656
-15	40	50200	23000	50228	23149	-0.1	-0.6	0.832	0.664
-20	40	40400	20680	40386	20830	0.0	-0.7	0.808	0.671
-25	40	31900	18280	31943	18344	-0.1	-0.3	0.777	0.678
-30	40	24700	15820	24740	15801	-0.2	0.1	0.738	0.682
-35	40	18590	13360	18635	13305	-0.2	0.4	0.688	0.679
-40	40	13340	10920	13499	10956	-1.2	-0.3	0.623	0.662
-45	40	9130	8540	9214	8857	-0.9	-3.7	0.537	0.618
-10	50	50500	27780	50547	27722	-0.1	0.2	0.826	0.673
-15	50	41150	25020	41103	25085	0.1	-0.3	0.805	0.679
-20	50	33000	22180	32941	22254	0.2	-0.3	0.778	0.685
-25	50	25950	19310	25924	19329	0.1	-0.1	0.744	0.690
-30	50	19920	16430	19927	16405	-0.0	0.2	0.701	0.692
-35	50	14760	13590	14836	13570	-0.5	0.1	0.645	0.688
-40	50	10390	10830	10547	10902	-1.5	-0.7	0.573	0.670

Tabel A1. Sammenligning mellem data og fit for Bitzer 6H-25.2Y

Tabel A2. Sammenligning mellem data og fit for Bitzer 2EC-4.2K

Т0	Тс	Qdata	Wdata	Qfit	Wfit	dQ	dW	η_v	η_{is}
°C	°C	W	W	W	W	%	%	-	-
-30	-5	22877	5260	22866	5260	0.0	0.0	0.822	0.581
-35	-5	18166	5430	18172	5427	-0.0	0.0	0.776	0.560
-40	-5	14065	5370	14063	5380	0.0	-0.2	0.719	0.534
-45	-5	10487	5140	10484	5144	0.0	-0.1	0.647	0.498
-30	-10	24674	4380	24645	4373	0.1	0.2	0.800	0.580
-35	-10	19753	4650	19723	4652	0.2	-0.0	0.808	0.570
-40	-10	15426	4710	15415	4702	0.1	0.2	0.756	0.552
-45	-10	11674	4610	11662	4579	0.1	0.7	0.691	0.524
-50	-10	8428	4370	8412	4344	0.2	0.6	0.607	0.478
-30	-15	26437	3540	26420	3513	0.1	0.8	0.877	0.561
-35	-15	21272	3910	21254	3931	0.1	-0.5	0.838	0.561
-40	-15	16752	4090	16731	4092	0.1	-0.1	0.789	0.554
-45	-15	12808	4100	12792	4079	0.1	0.5	0.728	0.534
-50	-15	9388	3970	9379	3993	0.1	-0.6	0.650	0.489
-35	-20	22807	3230	22821	3230	-0.1	0.0	0.867	0.532
-40	-20	18061	3500	18067	3514	-0.0	-0.4	0.822	0.539
-45	-20	13925	3600	13925	3588	-0.0	0.3	0.764	0.533
-50	-20	10330	3580	10338	3582	-0.1	-0.0	0.690	0.498

Figur A1 Volumetrisk virkningsgrad for Bitzer 6H-25.2Y

Figur A2 Isentropisk virkningsgrad for Bitzer 6H-25.2Y

Figur A3 Volumetrisk virkningsgrad for Bitzer 2EC-4.2K

Figur A4 Isentropisk virkningsgrad for Bitzer 2EC-4.2K

ISO-2 Konventionelt anlæg (Parallelanlæg).

Kompressorer:

Højtemperaturtrin: 16 stk. Prestcold PL400/0062. Kølemiddel: R404A Lavtemperaturtrin: 10 stk. Prestcold PL400/0062 Kølemiddel: R404A

Virkningsgrader:

Prestcold 400/0062 med R404A

Volumetrisk virkningsgrad

Etav=A+B*Phi med Phi som trykforholdet Pc/P0 Konstanterne er fundet til nedenstående værdier: A = 1.02740540205 B= - 0.03579218125

ISENTROPISK VIRKNINGSGRAD

Etals=(aA+bA*Tc)+(aB+bB*Tc)*Phi+(aC+bC*Tc+cC*Tc*Tc)*Phi*P hi

med Tc: Kondenseringstemperatur i $^\circ\text{C}$ og Phi som trykforholdet Pc/P0

Konstanterne er fundet til nedenstående værdier:

aA=0.7164393767 aB=- 0.001400215668 aC=-0.0004715863813 bA=-0.001127291506 bB=0.0002732193155 bC=-3.18364179E-005 cC=4.11231621E-007

Med de fundne konstanter gengives Prestcold's data med bedre end 2.5% for kuldeydelsen og bedre end 5.6 % for kompressorens optagne effekt for - $50^{\circ}C$ <To<- $20^{\circ}C$ og $25^{\circ}C$ <Tc< $55^{\circ}C$

Ved det aktuelle temperaturområde gengives dataene for kuldeydelsen bedre end 1.1% og for kompressorens optagne effekt bedre end 1.8%.

T0	Тс	Qdata	Wdata	Qfit	Wfit	dQ	dW	η _v	η_{is}
°C	°C	W	W	W	W	%	%	-	-
20	25	10790	3620	10702	3529	-0.8	-2.5	0.879	0.693
-25	25	8560	3290	8475	3236	-1.0	-1.7	0.847	0.690
-30	25	6650	2940	6579	2894	-1.1	-1.6	0.808	0.683
-35	25	5020	2570	4974	2523	-0.9	-1.8	0.756	0.671
-40	25	3660	2210	3626	2141	-0.9	-3.1	0.689	0.649
-45	25	2530	1840	2502	1762	-1.1	-4.2	0.601	0.610
-50	25	1610	1480	1574	1402	-2.3	-5.2	0.483	0.537
-20	30	9920	3800	9885	3779	-0.4	-0.6	0.858	0.691
-25	30	7820	3410	7782	3415	-0.5	0.1	0.823	0.687
-30	30	6020	3010	5991	3013	-0.5	0.1	0.777	0.678
-35	30	4500	2600	4474	2592	-0.6	-0.3	0.719	0.663
-40	30	3220	2190	3199	2170	-0.6	-0.9	0.643	0.634
-45	30	2150	1780	2136	1762	-0.6	-1.0	0.542	0.581
-50	30	1270	1400	1258	1382	-0.9	-1.3	0.408	0.484
-20	35	9040	3970	9051	3990	0.1	0.5	0.836	0.690
-25	35	7080	3520	7077	3558	-0.0	1.1	0.795	0.684
-30	35	5400	3060	5395	3098	-0.1	1.2	0.744	0.674
-35	35	3970	2600	3969	2629	-0.0	1.1	0.677	0.653
-40	35	2770	2140	2771	2169	0.0	1.3	0.591	0.616
-45	35	1780	1710	1771	1732	-0.5	1.3	0.477	0.547
-50	35	950	1280	945	1328	-0.5	3.7	0.326	0.421
-20	40	8150	4110	8202	4159	0.6	1.2	0.811	0.689
-25	40	6330	3600	6362	3659	0.5	1.6	0.765	0.683
-30	40	4770	3080	4793	3143	0.5	2.0	0.707	0.670
-35	40	3450	2570	3463	2627	0.4	2.2	0.632	0.644
-40	40	2340	2080	2343	2128	0.1	2.3	0.535	0.597
-45	40	1410	1600	1409	1657	-0.0	3.6	0.406	0.509
-20	45	7270	4220	7338	4279	0.9	1.4	0.784	0.690
-25	45	5590	3650	5639	3714	0.9	1.8	0.732	0.683
-30	45	4150	3080	4188	3142	0.9	2.0	0.667	0.667
-35	45	2940	2530	2957	2579	0.6	1.9	0.583	0.636
-40	45	1920	1990	1921	2037	0.1	2.4	0.473	0.577
-45	45	1060	1470	1057	1517	-0.3	3.2	0.329	0.470
-20	50	6380	4310	6459	4346	1.2	0.8	0.754	0.693
-25	50	4850	3680	4908	3716	1.2	1.0	0.697	0.685
-30	50	3540	3060	3583	3086	1.2	0.9	0.623	0.667
-35	50	2440	2450	2458	2473	0.7	0.9	0.529	0.630
-40	50	1510	1870	1510	1879	0.0	0.5	0.406	0.561
-20	55	5510	4370	5562	4350	1.0	-0.5	0.722	0.699
-25	55	4150	3680	4172	3654	0.5	-0.7	0.658	0.691
-30	55	2940	3010	2981	2967	1.4	-1.4	0.576	0.671
-35	55	1950	2350	1969	2296	1.0	-2.3	0.470	0.629
-40	55	1120	1730	1116	1633	-0.4	-5.6	0.333	0.550

Tabel A3. Sammenligning mellem data og fit for Prestcold 400/0062

Figur A5 Volumetrisk virkningsgrad for Prestcol 400/0062

Figur A6 Isentropisk virkningsgrad for Prestcold 400/0062

ISO-3 Kaskadeanlæg.

Kompressorer:

Højtemperaturtrin: 4 stk. Bitzer 4G-30.2Y Lavtemperaturtrin: 4 stk. Bitzer 2HC.3.2K Kølemiddel: R404A Kølemiddel: R744 (CO₂)

Virkningsgrader:

Bitzer 4G-30.2Y med R404A

Volumetrisk virkningsgrad

Isentropisk virkningsgrad

Med de fundne konstanter gengives Bitzers data med bedre end 1.2% for kuldeydelsen og bedre end 4.2 % for kompressorens optagne effekt for - $40^{\circ}C$ <T0<- $5^{\circ}C$ og $30^{\circ}C$ <Tc< $50^{\circ}C$

Ved det aktuelle temperaturområde gengives dataene for kuldeydelsen bedre end 0.4% og for kompressorens optagne effekt bedre end 0.6%.

Bitzer 2HC-3.2K med R744

Volumetrisk virkningsgrad:

$$\begin{split} & \mathsf{EtaV} = \mathsf{aC}(\mathsf{Tc})^*(\mathsf{Phi-1.232}) + 0.9280 \\ & \mathsf{med} \ \mathsf{Tc}: \ \mathsf{Kondenseringstemperatur} \ i \ ^{\mathsf{c}}\mathsf{C} \ \mathsf{og} \ \mathsf{Phi} \ \mathsf{som} \ \mathsf{trykforholdet} \\ & \mathsf{Pc/P0} \\ & \mathsf{Konstanten} \ \mathsf{er} \ \mathsf{fundet} \ \mathsf{til} \ \mathsf{nedenstaende} \ \mathsf{værdi:} \\ & \mathsf{aC} = -0.1119778613 + 0.0001747267099^*\mathsf{Tc} - 6.59837705\mathsf{E}-\\ & 005^*\mathsf{Tc}^*\mathsf{Tc} \end{split}$$

Isentropisk virkningsgrad:

Etals = A(T) + B(T)*Phi + C(T)*Phi*Phi
A = aA+bA*T+cA*T*T	
aA = 0.6460083817	bA = -0.001121194203
	cA = -0.0008059707318
B = aB+bB*T+cB*T*T	
aB = -0.009833249381	bB = 0.002792562938
	bB = 0.0006477213502
$C = aC+bC^{T}+cC^{T}T$	
aC = -0.0100883472	bC = -0.001219987245
	cC = -0.0001574917651

Med de fundne konstanter gengives Bitzers data med bedre end 0,4% for kuldeydelsen og bedre end 0.8 % for kompressorens optagne effekt for . - $50^{\circ}C$ <To<- $30^{\circ}C$ og - $20^{\circ}C$ <To<- $5^{\circ}C$

Т0	Tc	Qdata	Wdata	Qfit	Wfit	dQ	dW	η _v	η_{is}
°C	°C	W	W	W	W	%	%	-	-
-5	30	66500	17810	66388	17521	-0.2	-1.6	0.8803	0.6215
-10	30	54900	16840	54749	16858	-0.3	0.1	0.8665	0.6312
-15	30	44900	15700	44704	15805	-0.4	0.7	0.8494	0.6414
-20	30	36250	14410	36062	14478	-0.5	0.5	0.8281	0.6511
-25	30	28800	13020	28661	12986	-0.5	-0.3	0.8012	0.6586
-30	30	22450	11570	22355	11441	-0.4	-1.1	0.7669	0.6605
-35	30	17040	10090	17016	9955	-0.1	-1.3	0.7228	0.6503
-40	30	12480	8610	12528	8666	0.4	0.6	0.6654	0.6158
-5	40	57000	20380	57187	20180	0.3	-1.0	0.8656	0.6596
-10	40	47000	18880	47024	18908	0.1	0.1	0.8486	0.6669
-15	40	38250	17260	38233	17359	-0.0	0.6	0.8276	0.6738
-20	40	30700	15560	30658	15634	-0.1	0.5	0.8013	0.679
-25	40	24200	13810	24159	13831	-0.2	0.2	0.7682	0.6008
-30	40	18610	12060	18615	12051	0.0	-0.1	0.7260	0.6725
-35	40	13860	10330	13917	10404	0.4	0.7	0.6718	0.6483
-40	40	9850	8680	9964	9043	1.2	4.2	0.6011	0.5924
-5	50	47400	22580	47284	22345	-0.2	-1.0	0.8487	0.6905
-10	50	38900	20600	38762	20570	-0.4	-0.1	0.8281	0.6952
-15	50	31500	18560	31367	18593	-0.4	0.2	0.8026	0.699
-20	50	25100	16500	24976	16498	-0.5	-0.0	0.7708	0.7005
-25	50	19580	14450	19481	14368	-0.5	-0.6	0.7307	0.6975
-30	50	14840	12450	14785	12287	-0.4	-1.3	0.6796	0.6856
-35	50	10810	10540	10798	10338	-0.1	-1.9	0.6139	0.6570
-40	50	7410	8760	7440	8625	0.4	-1.5	0.5284	0.5973

Tabel A6. Sammenligning mellem data og fit for Bitzer 4G-30.2Y

Tabel A7. Sammenligning mellem data og fit for Bitzer 2HC-3.2K

T0	Тс	Qdata	Wdata	Qfit	Wfit	dQ	dW	η _v	η_{is}
°C	°C	W	W	W	W	%	%	-	-
-30	-5	13110	3020	13144	3031	-0.3	-0.4	0.8251	0.5793
-35	-5	10410	3110	10447	3114	-0.4	-0.1	0.7795	0.5615
-40	-5	8060	3060	8087	3082	-0.3	-0.7	0.7225	0.5358
-45	-5	6010	2950	6031	2961	-0.4	-0.4	0.6505	0.4978
-30	-10	14140	2510	14165	2515	-0.2	-0.2	0.8533	0.5799
-35	-10	11320	2660	11338	2672	-0.2	-0.5	0.8116	0.5701
-40	-10	8840	2700	8863	2700	-0.3	0.0	0.7595	0.5532
-45	-10	6690	2640	6708	2631	-0.3	0.3	0.6937	0.5247
-50	-10	4830	2500	4841	2507	-0.2	-0.3	0.6097	0.4764
-30	-15	15150	2030	15184	2014	-0.2	0.8	0.8800	0.5622
-35	-15	12190	2240	12217	2257	-0.2	-0.8	0.8411	0.5618
-40	-15	9600	2340	9619	2352	-0.2	-0.5	0.7926	0.5544
-45	-15	7340	2350	7356	2345	-0.2	0.2	0.7314	0.5341
-50	-15	5380	2270	5396	2291	-0.3	-0.9	0.6533	0.4905
-35	-20	13070	1850	13116	1857	-0.4	-0.4	0.8706	0.5322
-40	-20	10350	2010	10386	2026	-0.3	-0.8	0.8249	0.5381
-45	-20	7980	2070	8007	2069	-0.3	0.0	0.7672	0.5311
-50	-20	5920	2050	5947	2058	-0.4	-0.4	0.6935	0.4988

Figur A7 Volumetrisk virkningsgrad for Bitzer 4G-30.2Y

Figur A9 Volumetrisk virkningsgrad for Bitzer 2HC-3.2K

Figur A10 Isentropisk virkningsgrad for Bitzer 2HC-3.2K

ISO-4 Konventionelt anlæg (Parallelanlæg).

Kompressorer:

Højtemperaturtrin: 15 stk Copeland Scroll ZS75K4E-TDW Kølemiddel: R404A Lavtemperaturtrin: 7 stk. Copeland Scroll ZF33K4E-TDW Kølemiddel: R404A

Virkningsgrader:

Copeland Scroll ZS75K4E-TDW med R404A

Volumetrisk virkningsgrad

 $Etav = A0 + A1^{*}Phi + A2^{*}Phi^{2} + A3^{*}Phi^{3}$ med Tc: Kondenseringstemperatur i °C og Phi som trykforholdet Pc/P0 Konstanterne er fundet til nedenstående værdier: A0 = B00 + B01*TCB00 = 0.8214478092B01 = 0.00329997321 A1 = B10 + B11*TCB10 = 0.1172825484B11 = -0.00207410084 A2 = B20 + B21*TCB20 = - 0.02282297747 B21 = 0.000414526908 A3 = B30 + B31*TCB30 = 0.001171081343B31 = -2.174935134E-005

Isentropisk virkningsgrad

Etais = $A0 + A1^{*}Phi + A2^{*}Phi^{2} + A3^{*}Phi^{3} + A4^{*}Phi^{4}$ med Tc: Kondenseringstemperatur i °C og Phi som trykforholdet Pc/P0 Konstanterne er fundet til nedenstående værdier: A0= B00 + B01*TC B00 =- 1.683291391 B01 = 0.03134586271 A1 = B10 + B11*TC B10 = + 1.856838744 B11 = -0.02649334438 A2 = B20 + B21*TCB20 = -0.548216088 B21 = 0.0083381712A3 = B30 + B31*TCB30 = +0.07125904599B31 = -0.001146177771 A4 = B40 + B41*TCB40 = -0.003465252394B41 = 5.826828736E-005

Med de fundne konstanter gengives Copelands data med bedre end 0.3% for kuldeydelsen og bedre end 1.2 % for kompressorens optagne effekt for - $30^{\circ}C$ <T0<7°C og 30°C<Tc<50°C

Ved det aktuelle temperaturområde gengives dataene for kuldeydelsen bedre end 0.2% og for kompressorens optagne effekt bedre end 2.3%.

Det skal dog bemærkes, at der beregnes en volumetrisk virkningsgrad større end 1 hvilket i følge Copeland skyldes definitionen af det geometriske volumen.

Copeland Scroll ZF33K4E med R404A

Volumetrisk virkningsgrad:

Etav = $A0 + A1^*Phi + A2^*Phi^2$ med Tc: Kondenseringstemperatur i °C og Phi som trykforholdet Pc/P0 Konstanten er fundet til nedenstående værdi: $A0 = B00 + B01^*TC$ B00 = 0.6982677504B01 = 0.005518700035 $A1 = B10 + B11^*TC$

B101 = 0.1509323406	B11 = -0.002710157905
A2 = B20 + B21*TC	
B20 = - 0.01454138481	B21 = 0.0002681152023

Isentropisk virkningsgrad:

Etais = $A0 + A1^{*}Phi + A2^{*}Phi^{2} + A3Phi^{3}$ med Tc: Kondenseringstemperatur i °C og Phi som trykforholdet Pc/P0 Konstanten er fundet til nedenstående værdi: $A0 = B00 + B01*TC+B02*TC^{2}$ B00 = -1.080523234 B01 = 0.04605533767 B02 = -0.0002515889379 $A1 = B10 + B11*TC+B12*TC^{2}$ B10 = 0.996803734B11 = - 0.03133601376 B12 = 0.0002370951748 $A2 = B20 + B21*TC+B12*TC^{2}$ B20 = -0.1695294746B21 = +0.006000855424B22 = - 5.354749707E-005 $A3 = B30 + B31*TC+B32*TC^{2}$ B30 = 0.008334185331 B31 = - 0.0003219284941 B32 = + 3.138676947E-006

Med de fundne konstanter gengives Copelands data med bedre end 2.5% for kuldeydelsen og bedre end3.2 % for kompressorens optagne effekt for $-40^{\circ}C<T0<5^{\circ}C$ og $30^{\circ}C<Tc<50^{\circ}C$. I det aktuelle temperaturinterval gengives kuldeydelsen bedre end 1.4% og kompressorens optagne effekt bedre end 0.7%

Det skal dog bemærkes, at der beregnes en volumetrisk virkningsgrad større end 1 hvilket i følge Copeland skyldes definitionen af det geometriske volumen.

T0	Тс	Qdata	Wdata	Qfit	Wfit	dQ	dW	η _v	η_{is}
°C	°C	W	W	W	W	%	%	-	-
7	30	38180	8830	38158	8883	-0.06	0.60	0.991	0.433
5	30	35850	8500	35805	8559	-0.13	0.69	0.994	0.464
0	30	30520	7780	30455	7812	-0.21	0.41	1.000	0.537
-5	30	25800	7190	25772	7186	-0.11	-0.06	1.004	0.597
-10	30	21660	6720	21662	6691	0.01	-0.44	1.008	0.637
-15	30	18020	6330	18048	6314	0.15	-0.26	1.008	0.656
-20	30	14850	6000	14869	6003	0.13	0.05	1.003	0.654
-25	30	12080	5700	12082	5671	0.02	-0.50	0.993	0.642
-30	30	9650	5420	9670	5401	0.21	-0.35	0.975	0.611
7	40	33640	9450	33735	9433	0.28	-0.18	1.004	0.567
5	40	31580	9190	31642	9205	0.20	0.16	1.006	0.586
0	40	26860	8630	26875	8664	0.06	0.39	1.009	0.626
-5	40	22700	8160	22697	8194	-0.01	0.41	1.010	0.652
-10	40	19050	7760	19030	7801	-0.10	0.53	1.010	0.661
-15	40	15850	7400	15815	7449	-0.22	0.66	1.006	0.656
-20	40	13050	7060	13005	7075	-0.35	0.22	0.999	0.642
-25	40	10600	6710	10572	6790	-0.26	1.19	0.988	0.611
7	50	28480	10620	28463	10595	-0.06	-0.23	1.011	0.636
5	50	26710	10410	26706	10396	-0.02	-0.14	1.011	0.645
0	50	22680	9940	22697	9923	0.08	-0.17	1.012	0.661
-5	50	19160	9530	19183	9503	0.12	-0.28	1.013	0.665
-10	50	16080	9130	16104	9120	0.15	-0.11	1.012	0.657
-15	50	13400	8740	13414	8712	0.11	-0.32	1.010	0.643
-20	50	11060	8310	11074	8247	0.13	-0.76	1.005	0.626

Tabe A7 Copeland Scroll ZK75K4E

Т0	Tc	Qdata	Wdata	Qfit	Wfit	dQ	dW	η_v	η_{is}
°C	°C	W	W	W	W	%	%	-	-
5	30	35252	8142	35120	8400	0.38	-3.07	0.978	0.480
0	30	30239	7958	30180	7880	0.19	0.99	0.992	0.523
-5	30	25849	7578	25820	7400	0.11	2.41	1.007	0.567
-10	30	21988	7101	21980	6970	0.04	1.88	1.023	0.609
-15	30	18572	6603	18570	6580	0.01	0.35	1.037	0.645
-20	30	15526	6143	15520	6210	0.04	-1.07	1.048	0.668
-25	30	12775	5771	12770	5870	0.04	-1.69	1.049	0.667
-30	30	10246	5519	10220	5540	0.26	-0.38	1.033	0.634
-35	30	7858	5356	7820	5210	0.49	2.81	0.981	0.563
-40	30	5518	4870	5490	4880	0.50	-0.21	0.861	0.487
5	40	31579	9224	31760	9490	-0.57	-2.81	1.004	0.584
0	40	26993	9006	27100	8980	-0.40	0.29	1.013	0.605
-5	40	22968	8640	23010	8520	-0.18	1.41	1.022	0.626
-10	40	19423	8186	19440	8090	-0.09	1.18	1.031	0.643
-15	40	16285	7698	16300	7690	-0.09	0.10	1.036	0.654
-20	40	13490	7226	13520	7310	-0.22	-1.15	1.037	0.652
-25	40	10973	6816	11020	6940	-0.43	-1.79	1.026	0.632
-30	40	8669	6500	8740	6580	-0.81	-1.22	0.994	0.586
-35	40	6506	6244	6600	6210	-1.42	0.54	0.923	0.509
-40	40	4405	5644	4520	5830	-2.54	-3.18	0.781	0.423
5	50	26737	10580	26990	10820	-0.94	-2.22	1.013	0.635
0	50	22792	10360	22830	10330	-0.17	0.29	1.017	0.636
-5	50	19333	10020	19240	9880	0.48	1.42	1.021	0.635
-10	50	16299	9598	16160	9450	0.86	1.57	1.024	0.632
-15	50	13638	9132	13510	9040	0.95	1.01	1.026	0.624
-20	50	11302	8658	11230	8650	0.64	0.09	1.026	0.609
-25	50	9245	8215	9220	8250	0.27	-0.43	1.020	0.584
-30	50	7424	7838	7430	7850	-0.08	-0.15	1.004	0.544
-35	50	5794	7536	5780	7440	0.24	1.29	0.969	0.487
-40	50	4307	7179	4180	7000	3.05	2.56	0.900	0.419

Tabel A8 Copeland Scroll ZF33K4E

Figur A12 Isentropisk virkningsgrad for Copeland Scroll ZS75K4E-TDW

Figur A13 Volumetrisk virkningsgrad for Copeland Scroll ZF33K4E-TDW

Figur A14 Isentropisk virkningsgrad for Copeland Scroll ZF33K4E-TDW

APPENDIX B

Middelværdier og maksimal belastning.

ISO-1

Antal datapunkter: NTidT	ot = 2646		
COPKmmean = 3.535	Sigma = 0.226	min = 3.050	max = 4.120
COPKkormean = 3.417	Sigma = 0.033	min = 3.390	max = 3.450
COPFtotmean = 1.871	Sigma = 0.018	min = 1.540	max = 2.330
etaKmean = 0.490	Sigma = 0.008	min = 0.475	max = 0.502
etaFtotmean = 0.450	Sigma = 0.017	min = 0.366	max = 0.568
T0F mean = -29.7 °C			
TcF mean = -7.8 °C			
T0K mean = -8.0 °C			
TcK mean = 28.8 °C			
qKmax = 171 kW den 2	6. september kl. 11		
qFmax = 45 kW den 9.	december kl. 8		

ISO-2

```
Antal datapunkter NtidTot = 3280
COPKmmean = 2.532 Sigma = 0.244
COPKkormean = 3.117 Sigma = 0.131
                                              min = 2.250 max = 4.600
                                              min = 2.990 max = 4.190
                          Sigma = 0.161
                                              min = 1.280 max = 2.980
COPFmmean = 1.417
COPFkormean = 1.700 Sigma = 0.027
                                              min = 1.640 max = 1.890
etaKmean = 0.507
                          Sigma = 0.013
                                              min = 0.483 max = 0.600
etaFmean = 0.420
                          Sigma = 0.020
                                              min = 0.400 max = 0.563
T0F mean = -34.7 \circ C
TcF mean = 36.4 \degree C
T0K mean = -15.1 \degreeC
qKmax = 176 kW den 13. august kl. 16
qFmax = 38 kW den 3. oktober kl. 14
```

ISO-3

Antal datapunkter NTidTo	ot = 3136			
COPKmmean = 4.198	Sigma = 0.343	min =	2.750	max = 4.840
COPKkormean = 3.407	Sigma = 0.013	min =	3.380	max = 4.840
COPFtotmean = 1.812	Sigma = 0.013	min =	1.770	max = 1.860
etaKmean = 0.482	Sigma = 0.007	min =	0.444	max = 0.498
etaFtotmean = 0.392	Sigma = 0.022	min =	0.363	max = 0.505
T0F mean = -29.9 °C				
TcF mean = -7.8 °C				
T0K mean = -8.0 °C				
TcK mean = 23.3 °C				
qKmax = 145 kW den 9	. august kl. 16			
qFmax = 32 kW den 14	l. oktober kl. 12			

ISO-4

Antal datapunkter NTidTo	ot = 2890		
COPKmmean = 2.524	Sigma = 0.289	min = 1.520	max = 3.880
COPKkormean = 2.841	Sigma = 0.091	min = 2.450	max = 3.250
COPFmmean = 1.104	Sigma = 0.085	min = 0.790	max = 1.750
COPFkormean = 1.297	Sigma = 0.091	min = 1.120	max = 1.750
etaKmean = 0.469	Sigma = 0.015	min = 0.364	max = 0.504
etaFmean = 0.305	Sigma = 0.024	min = 0.215	max = 0.427
T0F mean = -35.6 °C			
TcF mean = 34.5 °C			
T0K mean = -14.4 °C			
TcK mean = 34.1 °C			
qKmax = 200 kW den 3	31. august kl. 8		
qFmax = 56 kW den 15	5. oktober kl. 11		
•			

Appendix C

Sammenligning af belastningsprofiler (Q_{aktuel}/Q_{max}).

Figur C1. Belastningsprofil på køl for perioden 1/8-31/12 2003.

Figur C2. Belastningsprofil på frost for perioden 1/8-31/12 2003

APPENDIX D

Referencebutik. Belastning bestemt på grundlag af skalering af møbellængde/rumstørrelse.

Indledning

For at kunne sammenligne energiforbruget for de forskellige supermarkeder er det nødvendigt at referere til en standard butik. For standardbutikken fastsættes omkredsen af frost- og kølegondoler, længden af kølereoler og ekspeditionsdiske samt voluminet af køle- og frostrum. For at få belastningsvariationen med i energiforbruget antages forholdet mellem den aktuelle belastning og den nominelle belastning at være konstant. Den nominelle belastning er bestemt ud fra fabrikantens oplysninger om kølebehov for møbler og rum.

Procedure for beregning af sammenligneligt energiforbrug.

På grundlag af målte værdier, midlet på timebasis, for fordampnings- og kondenseringstryk, indsugningstemperaturen til kompressorerne samt indkoblet kompressorkapacitet beregnes effektoptaget på grundlag af kompressorfabrikantens data. Effekten korrigeres til en effekt ved en given kondenseringstemperatur (30°C) for at eliminere indflydelsen fra forskellig driftsstrategi på kondensatorsiden (f.eks. varmegenvinding).

For de enkelte supermarkeder er opgivet data for de enkelte møbler og køle/frostrums nominelle kølebehov. Disse data er omregnet til et nominelt forbrug pr. m møbel og et forbrug pr. m³ rum.

Da det nominelle forbrug pr. m møbel og pr. m³ rum er forskellig for de enkelte supermarkeder (de nyeste supermarkeder har et lavere nominelt forbrug i møblerne) er beregnet en middelværdier for de fire supermarkeder. Der defineres et reference supermarked med en specificeret omkreds frostgondol (50m) og kølegondol (50m), længde af kølereol (35m) og ekspeditionsdisk (12m), kølerum (350m³) samt frostrum (100m³). Det således valgte reference supermarked svaret til middelværdien for de fire supermarkederne.

Energiforbruget for de enkelte supermarkeder omregnes til et forbrug for reference supermarkedet idet det antages, at forholdet mellem det nominelle forbrug og det reelle forbrug er konstant svarende til at fordampningstemperaturen for reference supermarkedet svarer til den målte fordampningstemperatur.

For kaskadeanlæggene bestemmes først referencebelastningerne for henholdsvis frost og køl. Belastningen på højtemperatur anlægget er summen af belastningen for frost plus lavtemperatur kompressorernes arbejde plus belastningen fra kølemøblerne.

Beregning af energiforbrug på grundlag af kompressorfabrikantens data.

"Målt" aktuelt effektoptag.

Ud fra de målte data kan kuldeydelse og samt effektoptag ved reference kondenseringstemperaturen nu beregnes som følger:

Aktuel volumenstrøm beregnes på grundlag af målt trykforhold og indsugningstemperatur på grundlag af udtrykket:

$$\dot{V} = \boldsymbol{h}_{v} \left(\frac{P_{c}}{P_{0}}, T_{c} \right) \cdot \dot{V}_{geometrisk} \cdot N_{Kom} \cdot I_{KomKap}$$

I ovenstående udtryk er

$$V: = \mathbf{h}_{v} \left(\frac{P_{c}}{P_{c}}, T_{c} \right)$$

Aktuel volumenstrøm gennem kompressoren

Volumetrisk virkningsgrad

Pc	Kondenseringstrykket
P ₀ :	Fordampningstrykket
T _c :	Kondenseringstemperatur
$\dot{V}_{geometrisk}$:	Kompressorens geometriske slagvolumen
N _{kom} :	Antal kompressorer
I _{KomKap} :	Indkoblet kompressorkapacitet

Massestrømmen er derfor:

$$\dot{m} = \frac{V}{v(T_1, p_0)}$$

med:

(T ₁ ,P ₀):	Specifikt volumen ved sugestopventil
T ₁	Temperatur ved sugestopventil
P ₀ :	Fordampningstryk

Den "målte" køleydelse bliver da

$(p_0)) - h_3(T_3)$
Enthalpi ved sugestopventil
Enthalpi efter kondensator
Temperatur efter kondensator

Og det korrigerede "målte" effektoptag:

$$W_{måltkor} = \frac{\dot{m} \cdot \left(h_{2korjs}\left(T_{2korjs}, v_{2korjs}\right) - h_{1}\left(T_{1}, v_{1}\left(T_{1}, p_{0}\right)\right)\right)}{\boldsymbol{h}_{is}\left(\frac{P_{ckor}}{P_{0}}, T_{ckor}\right)}$$

med

 $h_{2kor,is}(T_{2kor,is},v_{2kor,is})$

Enthtalpi efter kompressor ved isentropisk kompression

$$\mathbf{h}_{is}\left(rac{P_{ckor}}{P_0}, T_{ckor}
ight)$$
: Isentropisk virkningsgrad

 $\mathsf{P}_{\mathsf{c}.\mathsf{kor}}$:

Kondenseringstryk ved reference kondenseringstemperatur Reference kondenseringstemperaturer

T_{c,kor}:

Referencebelastning.

Konventionelt anlæg.

Kuldeydelserne for reference supermarkedet med separate kredse for køl og frost bestemmes ved hjælp af følgende procedure:

$$\begin{aligned} Q_{frostref} &= \left(L_{frostgondolref} \cdot q_{Lmfrost} + V_{frostrumref} \cdot q_{Vm, frost} \right) \cdot \frac{Q_{frostmålt}}{Q_{frostnom}} \\ Q_{frostnom} &= L_{frostgondolnom} \cdot q_{L, frost} + V_{frostrumnom} \cdot q_{V, frost} \\ Q_{kølref} &= \left(L_{kølegondol, ref} \cdot q_{gmkøl} + L_{kølereolref} \cdot q_{rmkøl} + V_{kølerumref} \cdot q_{Vmkøl} \right) \cdot \frac{Q_{kølmålt}}{Q_{kølnom}} \\ Q_{kølnom} &= L_{kølegondolnom} \cdot q_{g, køl} + L_{kølereolnom} \cdot q_{r, køl} + L_{ekspeditionnom} \cdot q_{ekskøl} + V_{kølerumnom} \cdot q_{V, køl} \end{aligned}$$

I ovenstående ligninger er:

L frostgondol, ref : L kølegondol, ref : L frostgondol, nom: L kølegondol, nom: L kølegondol, nom: L kølegondol, nom: V frostrum, ref : V kalen um ref :	Omkreds af frostgondol for reference butik Omkreds af kølegondol for reference butik Længde af kølereol for reference butik Omkreds af frostgondol for aktuel butik Omkreds af kølegondol for aktuel butik Længde af kølereol for aktuel butik Længde af ekspeditionsdisk for aktuel butik Volumen af frostrum for reference butik Volumen af kølerum for reference butik
V _{frostrum.nom}	Volumen af frostrum for aktuel butik
V _{kølerum,nom} :	Volumen af kølerum for aktuel butik
q _{Lm,frost} :	Kølebelastning pr. m omkreds frost gondol for reference
q _{L,frost} :	Kølebelastning pr. m omkreds for frost gondol aktuel butik
q _{gm,køl} :	Kølebelastning pr. m omkreds kølegondol for reference butik
q _{rm,køl} :	Kølebelastning pr. m for reference kølereol aktuel butik
q _{g,køl} :	Kølebelastning pr. m omkreds kølegondol for aktuel butik
q _{r,kø} l:	Kølebelastning pr. m kølereol for aktuel butik
q _{esk,køl} :	Kølebelastning pr. m ekspeditionsdisk for aktuel butik
Q _{Vm,frost} :	Kølebelastning pr m ³ ₃ frostrum for reference butik
q _{Vm,køl} :	Kølebelastning pr m kølerum for reference butik
q _{V,frost} :	Kølebelastning pr. m [°] frostrum for aktuel butik
q _{V,køl} :	Kølebelastning pr. m [°] kølerum for aktuel butik
Q _{frost,ref} :	Aktuel belastning på frost for reference butik
Q _{køl,ref}	Aktuel belastning på køl for reference butik
Q _{frost,nom} :	Nominel belastning på frost for aktuel butik
Q _{køl,nom}	Nominei belastning på køl for aktuel butik
Q _{køl,målt} :	iviait belastning pa køl for aktuel butik
Q _{frost,målt} :	"Mait" belastning pa frost for aktuel butik

og effektoptaget bestemmes som:

$$W_{total,ref} = \frac{Q_{k \neq l,ref}}{Q_{k \neq l,m alt}} \cdot W_{k \neq l,m alt,kor} + \frac{Q_{frost,ref}}{Q_{frost,m alt}} \cdot W_{frost,m alt,kor}$$

med

W_{total,ref}: W_{køl,målt,kor}: W_{frost,målt,kor}: Beregnet total effektoptag for reference butik Målt effektoptag på køl for aktuel butik henført til standard kondenseringstemperatur. Målt effektoptag på frost for aktuel butik henført til standard kondenseringstemperatur.

Kaskadeanlæg.

For kaskadeanlæggene beregnes kuldeydelse og effektoptag for frost-delen som angivet ovenfor for anlæg med separate kredse, dvs. at effektoptaget for referenceanlæggets frostdel er:

$$W_{frost,ref} = \frac{Q_{frost,ref}}{Q_{frost,målt}} \cdot W_{frost,målt,kor}$$

med

W_{frost,ref} : W_{frost,målt,kor} Beregnet effektoptag for frost for reference butik Målt effektoptag på frost for aktuel butik henført til standard kondenseringstemperatur

For kaskadeanlæggets køledel bestemmes belastningen fra møblerne og kølerum i referenceanlægget som:

$$\begin{split} Q_{k \phi l r e f} &= \left(L_{k \phi l e g ondol, ref} \cdot q_{g m k \phi l} + L_{k \phi l e r e o l r e f} \cdot q_{r m k \phi l} + V_{k \phi l e r um ref} \cdot q_{V m^{3}, k \phi l} \right) \cdot \frac{Q_{k \phi l m \hat{a} l t}}{Q_{k \phi l n o m}} \\ Q_{k \phi l n o m} &= L_{k \phi l e g ondol n o m} \cdot q_{g, k \phi l} + L_{k \phi l e r e o l n o m} \cdot q_{r k \phi l} + L_{e k s p e d i t i o n n o m} \cdot q_{e k s k \phi l} + V_{k \phi l e r u m n o m} \cdot q_{V m k \phi l} \\ Q_{k \phi l m \hat{a} l t} &= Q_{k \phi l t o t m \hat{a} l t} - Q_{f r o s t m \hat{a} l t} - W_{f r o s t m \hat{a} l t} \end{split}$$

med

Qkøl,tot,målt:Målt kølebelastning på højtemperaturdelen.Qkøl,måltMålt belastning på kølemøbler og kølerum beregnet på
grundlag af målt total energiforbrug på højtemperatur-
delen og målt belastning på frost samt energiforbrug på
frost.

og det samlede effektoptag for højtemperaturdelen bestemmes som:

$$W_{k \neq l, totref} = \frac{Q_{k \neq lref} + Q_{frostref} + W_{frostref}}{Q_{k \neq l, totmålt}} \cdot W_{k \neq l, totmålt}$$

Det samlede effektoptag for kaskadeanlægget er derfor:

$$W_{totref} = W_{frost,ref} + W_{k \neq ltotref}$$

Resultater.

Figurer D1 viser en sammenligning af energiforbruget pr. døgn for september 2003, men forløbet er det samme for den øvrige måleperiode. Figur D2 viser en sammenligning af effektoptaget (timemiddelværdi) for et enkelt

Figur D2 viser en sammenligning af effektoptaget (timemiddelværdi) for et enkelt døgn (1. september 2003)

Af Figur D1 og Figur D2 fremgår, at energiforbruget for reference butikken med data fra ISO-1 og ISO-3 er ca. 2/3 af energiforbruget for reference butikken med data fra ISO-2 og ISO-4. En kritisk gennemgang af de beregnede energiforbrug for reference butikken viser imidlertid, at der ikke er samme belastning for reference butikken med data fra de fire supermarkeder, hvilket er vist i Figur D3 (belastning på køl) og Figur D4 (belastning på frost). ISO-1 og ISO-3 har en belastning på køl der er ca. 2/3 af belastningen på køl for ISO-2 og ISO-4, medens kun ISO-3 adskiller sig med hensyn til belastningen på frost, hvor ISO-1, ISO-2 og ISO-4 ligger væsentligt over ISO-3. Årsagen til denne variation i belastning kan delvis forklares med forskellig relativ belastning som vist i Figur D5 og Figur D6. Af disse figurer fremgår at specielt ISO-4 har et belastningsprofil der afviger væsentligt fra de tre øvrige. Årsagen til denne afvigelse må skyldes, at skaleringsfaktoren, den nominelle belastning, er for usikker.

Konklusion.

Det må konkluderes, at en "simpel" skalering baseret på nominelt kølebehov ikke giver et retvisende billede af supermarkedernes energiforbrug på grund af usikkerhed på det nominelle kølebehov.

Figur D2. Effektoptag for referencebutik på grundlag af målt energiforbrug (døgn).

Figur D3. Kølebelastning for referencebutik på grundlag af målt belastning (døgn).

Figur D4. Frostbelastning for referencebutik på grundlag af målt belastning (døgn).

APPENDIX E

Referencebutik.

Energiforbrug bestemt på grundlag af reference belastningsprofil og aktuel COP.

Indledning

For at kunne sammenligne energiforbruget for de forskellige supermarkeder er det nødvendigt at referere til en standard butik. For standardbutikken fastsættes belastning for henholdsvis frost og køl på grundlag af et belastningsprofil for perioden 1.8 .2003 til 31.12.2003 samt en maksimal belastning for henholdsvis frost og køl. Endvidere er fastlagt en reference kondenseringstemperaur på 30°C

Procedure for fastlæggelse af reference belastning.

På grundlag af målte kuldeydelser for de fire anlæg, midlet på timebasis, for perioden 1.8.2003 til 31.12.2003 er valgt at benytte målingerne fra ISO-2 til at generere et relativt belastningsprofil. Det relative belastningsprofil (q_{rel}) frem-kommer som forholdet mellem den øjeblikkelige belastning (Q_{aktuel}) og den maksimale belastning i perioden (Q_{max}):

$$q_{rel} = Q_{aktuel}/Q_{max}$$

I Appendix B er angivet maksimal belastning samt tidspunkt for den målte maksimale belastning. For reference butikken er valgt en maksimal belastning på køl på 110 kW og en maksimal belastning på frost på 40 kW.

Årsagen til at ISO-2 er valgt som reference for det dimensionsløse profil skyldes, at målingerne for dette anlæg udgør det mest komplette sæt af de fire anlæg. En sammenligning af butikkernes belastningsprofiler findes i Appendix C.

Beregning af effektforbrug på grundlag reference belastning.

Aktuelt COP.

Ud fra de målte data kan kuldeydelse og samt effektforbrug ved reference kondenseringstemperaturen nu beregnes som følger:

Aktuel volumenstrøm beregnes på grundlag af målt trykforhold og indsugningstemperatur på grundlag af udtrykket:

$$\dot{V} = \boldsymbol{h}_{v} \left(\frac{P_{c}}{P_{0}}, T_{c} \right) \cdot \dot{V}_{geometrisk} \cdot N_{Kom} \cdot I_{KomKap}$$

I ovenstående udtryk er

$$\dot{V}$$
:
 $\boldsymbol{h}_{v}\left(\frac{P_{c}}{P_{0}},T_{c}\right)$:
Pc

Aktuel volumenstrøm gennem kompressoren

Volumetrisk virkningsgrad

Kondenseringstrykket Fordampningstrykket Kondenseringstemperatur

Kompressorens geometriske slagvolumen

 $\dot{V}_{geometrisk}$: N_{kom}: I_{KomKap}:

Antal kompressorer Indkoblet kompressorkapacitet

Massestrømmen er derfor:

$$\dot{m} = \frac{\dot{V}}{v(T_1, p_0)}$$

P₀:

T_c:

med:

v(T ₁ ,P ₀):	Specifikt volumen ved sugestopventil
T ₁	Temperatur ved sugestopventil
P ₀ :	Fordampningstryk

Den "målte" køleydelse bliver da

$Q_{m alt}$	$= \dot{m} \cdot h_1(T_1, v_1(T_1, p))$	$(h_0)) - h_3(T_3)$
med:		
	h ₁ (T ₁ , v ₁ (T ₁ , P ₀)):	Enthalpi ved sugestopventil
	h ₃ (T ₃):	Enthalpi efter kondensator
	T ₃ :	Temperatur efter kondensator

Og det korrigerede "målte" effektoptag:

$$W_{m\hat{a}ltkor} = \frac{\dot{m} \cdot \left(h_{2kor,is}\left(T_{2kor,is}, v_{2kor,is}\right) - h_{1}\left(T_{1}, v_{1}\left(T_{1}, p_{0}\right)\right)\right)}{h_{is}\left(\frac{P_{ckor}}{P_{0}}, T_{ckor}\right)}$$

med

 $h_{2kor,is}(T_{2kor,is},v_{2kor,is})$ kompression

$$\boldsymbol{h}_{is}\left(\frac{P_{ckor}}{P_0},T_{ckor}\right)$$
:

Enthtalpi efter kompressor ved isentropisk

Isentropisk virkningsgrad

Kondenseringstryk ved reference

 $P_{c.kor}$: kondenseringstemperatur $T_{c,kor}$:

Reference kondenseringstemperaturer

Og dermed

$$COP_{kor} = \frac{Q_{målt}}{W_{måltkor}}$$

Referenceeffekt.

Konventionelt anlæg.

Reference belastning for køl henholdsvis frost bestemmes som

$$Q_{ref} = q_{rel} \cdot Q_{max}$$

og effektforbruget bestemmes som:

$$W_{totalref} = \frac{Q_{k \not ol, ref}}{COP_{k \not ol, m altkor}} + \frac{Q_{frost, ref}}{COP_{frost, m altkor}}$$

med

W _{total,ref} :	Beregnet total effektforbrug for reference butik
COP _{køl,målt,kor}	Målt COP for køl for aktuel butik henført til standard
	kondenseringstemperatur.
COP _{frost,målt,kor} :	Målt COP for frost for aktuel butik henført til standard
	kondenseringstemperatur.

Kaskadeanlæg.

For kaskadeanlæggene beregnes kuldeydelse og effektforbrug for frost-delen som angivet ovenfor for anlæg med separate kredse, dvs. at effektforbruget for referenceanlæggets frostdel er:

$$W_{frost,ref} = \frac{Q_{frost,ref}}{COP_{frost,målt}}$$

med

W_{frost,ref}: COP_{frost,målt} Beregnet effektforbrug for frost for reference butik Målt COP for frost for aktuel butik (NB! Ingen korrektion for kondenseringstemperatur) For kaskadeanlæggets køledel er den samlede belastning summen afl kølebelastningen fra møblerne og kølerum bestemt ud fra reference belastningsprofil og kondensatorydelse for frostdelen bestemt som summen af kuldeydelse og effektoptag:

$$W_{k \neq l t o tref} = \frac{\left(Q_{k \neq lref} + Q_{frostref} + W_{frostref}\right)}{COP_{k \neq l, m a l t, kor}}$$

med

W _{køl,tot,ref} :	Beregnet effektforbrug for højtemperaturdelen for
	reference butik.
COP _{køl,målt,kor}	Målt COP for køl for aktuel butik henført til standard
	kondenseringstemperatur

Det samlede effektforbrug for kaskadeanlægget er derfor:

$$W_{totref} = W_{frostref} + W_{k \neq ltotref} + W_{pumpe}$$

Resultater.

Figur E1 og Figur E2 viser henholdsvis referencebelastningen og det tilsvarende totale effektoptag (timemiddelværdi) for de fire anlæg over en uge med høj belastning. Effekt til pumpe er inkluderet for anlæg med pumpecirkulation Tilsvarende viser Figur E3 og Figur E7 belastning og effektoptag for en uge med lav belastning. Af Figur E2 og Figur E4 fremgår at for samme belastningsprofil har ISO-1, ISO-2 og ISO-3 næsten samme effektoptag, medens ISO-4 har et væsentligt højere effektoptafnergiforbrug.

Det skal anføres, at alle butikkerne har sammenlignelige ydre driftsbetingelse: ude og inde temperatur samt fugtighed i butikken, se Figur E5 og Figur E6. Årsagen til det væsentlige højere effektoptag for ISO-4 må tilskrives den lavere isentropiske virkningsgrad for de anvendte kompressorer ved de herskende driftsbetingelser (trykforhold). Det aktuelle trykforhold er væsentligt højere end det til det indbyggede volumenforhold svarende trykforhold. De tre øvrige anlæg har ikke samme afhængighed af trykforholdet da kompressorerne her er stempelkompressorer. Se Appendix A.

Konklusion.

På grundlag af de foreliggende resultater kan konkluderes at kaskadeanlæggene for samme påtrykte belastningsprofil har samme energiforbrug som et normalt dimensioneret klassisk opbygget anlæg med stempelkompressorer.

Figur E1. Referencebelastning ved høj belastning.

Figur E2. Effektoptag ved høj belastning

Figur E3. Belastningsprofil ved lav belastning

Figur E4. Effektoptag ved lav belastning.

Figur E5. Fugt og temperatur forhold ved høj belastning.

Figur E6. Fugt og temperatur forhold ved lav belastning.

APPENDIX F

EKSEMPLER PÅ RESULTATFILER.

1. Indledning.

I det følgende givet eksempler på resultater, der er genereret på grundlag af de målte data. På grund af den principielle forskel i anlægsopbygning er resultatfilerne ikke helt ens, men parvis er de ens dvs. ISO-1 og ISO-3 har ens udseende og ISO-2 og ISO-4 har ligeledes ens udseende.

Der er to typer filer: Den første type indeholder opsummeret døgnforbrug/ydelse for en måned og den anden type indeholder timeværdier for et døgn.

Den første del af filnavnet for månedsværdier er X_AAMM medens den første del af filnavnet for døgnværdierne er X_AAMMDD hvor

X: Specificere anlæg (F: ISO-1, H: ISO, S: ISO-3 og V: ISO-4)

AA: År (03 eller 04)

MM: Måned (Januar: 01, Februar: 02,....,December:12)

DD: Dag i måneden (01,02,....,31).

2. Månedsudskrift. Filtype X_AAMMc.res

Disse filer indeholder energiforbruget pr døgn beregnet og målt samt afvigelsen mellem målt og beregnet energiforbrug.

ISO-1 og	ISO-3:	
wF:	kWh/døgn.	Beregnet energiforbrug pr. døgn til frostkompres- sorerne.
wK:	kWh/døgn.	Beregnet energiforbrug pr. døgn til kølekompres- sorerne.
wP:	kWh/døgn	Målt energiforbrug pr. døgn til cirkulationspumpe pr. døgn.
wTot:	kWh/døgn.	Beregnet totalt energiforbrug pr. døgn til frost- og kølekompressorerne samt cirkulationspumpe.
wTotm:	kWh/døan.	Målt totalt energiforbrug.
DwTot:	%/kWh.	Afvigelse mellem beregnet og målt totalt energi- forbrug pr. døgn.
WRefm:	kWh/døgn	Beregnet energiforbrug pr. døgn til frostkompres- sorerne for referencebutik på grundlag af skalering af møbel/rumdata.
wKrefm:	kWh/døgn.	Beregnet energiforbrug pr. døgn til kølekompres- sorerne for referencebutik på grundlag af skalering af møbel/rumdata.
Totref:	kWh/døgn.	Beregnet totalt energiforbrug pr. døgn til for refe- rencebutik på grundlag af skalering af møbel/ rumdata.
ISO-2 og	ISO-4.	
wKm:	kWh/døgn	Målt energiforbrug pr. døgn til kølekompressorerne incl. kantvarme, elafrimning og ventilatorer.
wK:	kWh/døgn	Beregnet energiforbrug pr. døgn til kølekompres- sorerne.
DwK:	%/kWh	Afvigelse mellem beregnet og målt energiforbrug pr. døgn til kølekompressorerne uden korrektion for kantvarme m.m.
wFm:	kWh/døgn	Målt energiforbrug pr. døgn til frostkompressorerne incl. kantvarme, elafrimning og ventilatorer.
wFK:	kWh/døgn	Beregnet energiforbrug pr. døgn til frostkompres- sorerne.

DwF:	%/kWh	Afvigelse mellem beregnet og målt energiforbrug pr. døgn til frostkompressorerne uden korrektion for kantvarme m.m
wKm+wFm:	kWh/døg n	Målt totalt energiforbrug til køleanlæg incl. kantvarme m.m.
DwTot:	kWh/døgn	Afvigelse mellem målt og beregnet energiforbrug til kompressorerne uden korrektion for kantvarme m.m.
DwTot:	%	Afvigelse mellem målt og beregnet energiforbrug til kompressorerne med korrektion for kantvarme m.m. Kun ISO-2.(Kantvarme m.m. 297 kWh/døgn)

3. Døgnudskrift. Filtype X_AAMMDDc.res

Disse filer indeholder fordampnings- og kondenseringstemperatur, trykforhold, volumetrisk isentropisk virkningsgrad samt kuldeydelse og effektforbrug midlet over en time for frost og køl.

Samme indhold for alle de fire anlæg.

TcK: C Kondenseringstemperatur for køl.	
PratioK: - Trykforhold for kølekompressorerne.	
EtavK: - Volumetrisk virkningsgrad for kølekompressorer	ne.
EtaisK: - Isentropisk virkningsgrad for kølekompressorern	ie.
qK: kW Kuldeydelse på køl.	
wK: kW Effekt til kølekompressorerne	
T0F: C Fordampningstemperatur for frost	
TcF: C Kondenseringstemperatur forfrost.	
PratioF: - Trykforhold for frostkompressorerne.	
EtavF: - Volumetrisk virkningsgrad for frostkompressorer	ne.
EtaisF: - Isentropisk virkningsgrad for frostkompressorerr	ıe.
qF: kW Kuldeydelse på frost.	
wF: kW Effekt til frostkompressorerne	

4. Døgnudskrift. Filtype X_AAMMDDfugt.res

Disse filer indeholder fordampnings- og kondenseringstemperatur, relativ kuldeydelse COP, carnot virkningsgrad for køl og frost samt inde- og udetemperatur og fugtighed i butik.

Filerne er næsten ens for de fire anlæg men ISO-1 og ISO-3 indeholde i forhold til ISO-2 og ISO-4 COP og Carnot virkningsgrad for frost total dvs. inklusiv det arbejde er udføres af køledelen. Dette svarer til at have et kaskadeanlæg der kun arbejder på frost.

Tid:	Н	Timer fra døgnets begyndelse.
T0F:	С	Fordampningstemperatur for frost
TcF:	С	Kondenseringstemperatur for frost.
qF/qFm	-	Forholdet mellem den aktuelle kuldeydelse for frost og den maksimale kuldeydelse for frost i målepe- rioden.
COPF:	-	COP for frost (Forholdet mellem kuldeydelse og kompressorens effektoptag)
etaF:	-	Carnot virkningsgrad for frost. Forholdet mellem COP og Carnot COP.
COPFt	-	COP for frost som kaskadeanlæg. Kun ISO-1 og ISO-3.
etaFt	-	Carnot virkningsgrad for frost som kaskadeanlæg.
T0K:	С	Fordampningstemperatur for køl.
TcK:	С	Kondenseringstemperatur for køl.
qK/qKm	-	Forholdet mellem den aktuelle kuldeydelse for frost og den maksimale kuldeydelse for køl i målepe- rioden.
COPK:	-	COP for køl
etaK:	-	Carnot virkningsgrad for køl.
Tinde:	С	Temperatur i butik.

Tude:	С	Udetemperatur.
Fugt:	%	Relativ fugtighed i butik.

5. Døgnudskrift. Filtype X_AAMMDDrbutik.res

Disse filer indeholder normeret kuldeydelse samt ydelser og totalt effektoptag for referencebutik på grundlag af skalering af møbel/rumdata. TID H Timer fra døgnets begyndelse

IID	Н	l imer fra døgnets begyndelse.
QK/qKnom	-	Forholdet mellem den øjeblikkelige kuldeydelse og
		den normerede kuldeydelse for køl.
QF/qFnom	-	Forholdet mellem den øjeblikkelige kuldeydelse og
		den normerede kuldeydelse for frost.
qKrefb_	kW	Beregnet ydelse på køl for referencebutik baseret
		på skalering.
qFrefb	kW	Beregnet ydelse på frost for referencebutik baseret
		på skalering.
wTotrefb	kW	Beregnet totalt effektoptag for referencebutik
		baseret på skalering.

ISO-1									
Day	WF	WK	Wp	wTot	wTotm	DwTot	wRefm	wKrefm	Totrefm
	kWh/d	kWh/d	kWh/d	kWh/d	kWh/d	%	kWh/d	kWh/d	kWh/d
Monday 01. september 2003	125	779	70	974	1054	ę	129	693	892
Tuesday 02. september 2003	123	691	70	883	1008	-12	126	623	819
Wednesday 03. september 2003	122	832	70	1023	1095	-7	126	729	924
Thursday 04. september 2003	126	922	70	1118	1187	-9	130	780	679
Friday 05. september 2003	127	947	70	1144	1201	-5	131	792	992
Saturday 06. september 2003	122	882	- 01	1073	1162	φ	126	752	947
Sunday 07. september 2003	108	729	70	906	1019	-11	111	647	828
Monday 08. september 2003	129	924	70	1122	1193	9-	133	782	985
Tuesday 09. september 2003	127	879	70	1076	1167	ę	131	755	956
Wednesday 10. september 2003	126	910	70	1106	1153	-4	130	792	991
Thursday 11. september 2003	129	852	70	1050	1131	2-	133	746	949
Friday 12. september 2003	127	006	70	1097	1179	1-	131	770	971
Saturday 13. september 2003	119	852	70	1041	1126	ထု	123	737	930
Sunday 14. september 2003	102	602	70	773	606	-15	105	547	722
Monday 15. september 2003	125	905	70	1100	1168	ę	129	763	962
Tuesday 16. september 2003	124	809	70	1003	1182	-15	128	695	893
Wednesday 17. september 2003	126	782	70	977	1181	-17	130	699	869
Thursday 18. september 2003	34	195	23	252	338	-25	35	178	236
Friday 19. september 2003	129	839	70	1037	1281	-19	133	713	915
Sunday 21. september 2003	101	529	70	700	1000	-30	104	491	665
Monday 22. september 2003	118	793	70	980	1236	-21	122	672	864
Thursday 25. september 2003	45	267	26	338	350	4	46	239	311
Friday 26. september 2003	116	816	70	1002	1119	-11	120	723	912
Saturday 27. september 2003	115	758	70	942	1045	-10	118	679	867
Sunday 28. september 2003	103	556	70	729	838	-13	106	513	688
Monday 29. september 2003	120	683	20	873	1040	-16	124	605	798
Tuesday 30. september 2003	126	662	20	858	1102	-22	130	593	792

6 Udskrifter for de fire butikker.

ISO-2											
Day	wKm	wK	DwK	wFm	wF	DWF	wKm+wFm	wK+wF	DwTot	DwTot	Timer
	kWh	kWh	%	kWh	kWh	%	kWh	kWh	kWh	%	н
Monday 01. september 2003	963	897	1	537	376	30	1499	1273	226	-6	24
Tuesday 02. september 2003	915	844	8	536	367	31	1451	1212	239	-5	24
Wednesday 03. september 2003	1003	932	7	546	376	31	1549	1309	240	-5	24
Thursday 04. september 2003	1037	971	9	527	356	32	1564	1327	237	-5	24
Friday 05. september 2003	1063	1000	9	573	397	31	1635	1397	238	-4	24
Saturday 06. september 2003	1033	970	9	544	374	31	1577	1344	233	-5	24
Sunday 07. september 2003	826	745	10	438	273	38	1264	1017	246	-5	24
Monday 08. september 2003	1031	957	7	549	373	32	1580	1329	251	4	24
Tuesday 09. september 2003	1014	943	7	574	397	31	1588	1340	248	-4	24
Wednesday 10. september 2003	1036	996	7	563	386	31	1599	1352	247	-4	24
Thursday 11. september 2003	1004	940	9	554	372	33	1558	1312	246	4	24
Friday 12. september 2003	1063	989	7	584	401	31	1647	1391	256	9	24
Saturday 13. september 2003	1047	985	9	528	361	32	1575	1346	229	-5	24
Sunday 14. september 2003	819	736	10	418	254	39	1237	066	247	-2	24
Monday 15. september 2003	1029	952	7	545	367	33	1574	1318	256	-3	24
Tuesday 16. september 2003	1046	976	7	573	402	30	1619	1379	240	4	24
Wednesday 17. september 2003	987	934	5	545	354	35	1531	1288	243	ę	23
Thursday 18. september 2003	1057	666	5	544	367	33	1600	1365	235	-5	24
Friday 19. september 2003	1071	1029	4	574	397	31	1645	1426	218	-6	24
Saturday 20. september 2003	1038	666	4	543	373	31	1581	1372	208	-7	24
Sunday 21. september 2003	812	736	6	450	273	39	1262	1009	252	-2	24
Monday 22. september 2003	1047	934	11	561	386	31	1608	1320	287	7	24
Tuesday 23. september 2003	274	282	-3	145	107	26	419	389	30	-27	6
Thursday 25. september 2003	367	364	•	220	159	28	587	523	64	-10	6
Friday 26. september 2003	979	924	9	570	386	32	1548	1309	239	-5	24
Saturday 27. september 2003	901	848	9	519	352	32	1420	1200	220	1-	24
Sunday 28. september 2003	733	646	12	426	256	40	1158	903	255	-5	24
Monday 29. september 2003	880	810	8	553	371	33	1433	1181	252	4	24
Tuesday 30. september 2003	896	835	7	564	378	33	1460	1213	246	4	24

SO-3									
Day	WF	wK	Wp	wTotm	wTot	DwTot %	wRefm	wKrefm	Totrefm
	kWh	kWh	kWh	kWh	kWh	kWh	kWh	kWh	kWh
Monday 01. september 2003	95	598	58	1548	750	798	75	610	743
Tuesday 02. september 2003	95	589	58	1542	742	800	76	600	733
Wednesday 03. september 2003	91	624	58	1586	773	813	73	622	752
Thursday 04. september 2003	92	647	58	1621	796	825	73	622	753
Friday 05. september 2003	91	666	58	1648	815	833	73	648	778
Saturday 06. september 2003	88	626	58	1589	772	817	70	610	738
Sunday 07. september 2003	70	484	58	1331	612	719	56	484	598
Monday 08. september 2003	93	688	58	1664	839	825	74	645	777
Tuesday 09. september 2003	92	666	58	1651	816	834	74	631	762
Wednesday 10. september 2003	92	647	58	1604	797	807	73	647	778
Thursday 11. september 2003	92	627	58	1585	777	808	73	622	752
Friday 12. september 2003	95	638	58	1623	791	832	76	628	761
Saturday 13. september 2003	85	625	58	1574	767	807	68	615	740
Sunday 14. september 2003	69	462	58	1309	589	720	55	481	594
Monday 15. september 2003	94	647	58	1614	799	815	75	627	760
Tuesday 16. september 2003	93	669	58	1650	820	830	74	647	779
Wednesday 17. september 2003	89	664	58	1642	811	831	71	637	766
Thursday 18. september 2003	88	697	58	1684	842	842	70	643	770
Friday 19. september 2003	92	693	58	1684	843	840	74	653	784
Saturday 20. september 2003	86	646	58	1603	789	814	68	629	754
Sunday 21. september 2003	70	485	58	1333	613	720	56	494	607
Monday 22. september 2003	93	697	58	1682	847	835	74	657	789
Friday 26. september 2003	92	625	58	1598	774	824	73	624	755
Saturday 27, september 2003	85	553	58	1491	696	795	68	570	695
Sunday 28. september 2003	68	391	58	1223	517	706	54	427	539
Monday 29. september 2003	94	570	58	1507	721	786	75	600	732
Tuesday 30. september 2003	96	582	58	1530	735	795	76	265	731

ISO-4										
Day	wKm	wK	DwK	wFm	wΕ	DwF	wKm+wFm	WK+WF	DwTot	Timer
	kWh	kWh	kWh	kWh	kWh	kWh	kWh	kWh	kWh	т
Monday 01. september 2003	0	1071	1071	734	582	-153	734	1653	-918	24
Tuesday 02. september 2003	0	978	978	718	569	-149	718	1547	-829	24
Wednesday 03. september 2003	0	1228	1228	742	596	-147	742	1823	-1081	24
Thursday 04. september 2003	0	1421	1421	726	573	-154	726	1994	-1267	24
Friday 05. september 2003	0	1258	1258	754	608	-146	754	1866	-1113	24
Saturday 06. september 2003	0	1223	1223	691	564	-127	691	1787	-1096	24
Sunday 07. september 2003	0	741	741	559	474	-85	559	1215	-656	24
Sunday 07. september 2003	0	741	741	559	474	-85	559	1215	-656	24
Tuesday 09. september 2003	0	1082	1082	753	603	-150	753	1685	-932	24
Wednesday 10. september 2003	0	1067	1067	747	592	-155	747	1659	-912	24
Thursday 11. september 2003	0	1070	1070	755	598	-157	755	1668	-913	24
Friday 12. september 2003	0	1131	1131	735	584	-151	735	1714	-979	24
Saturday 13. september 2003	0	1095	1095	711	586	-125	711	1681	-970	24
Sunday 14. september 2003	0	768	768	535	469	-66	535	1238	-703	24
Monday 15. september 2003	0	1096	1096	753	602	-150	753	1698	-946	24
Wednesday 17. september 2003	0	1094	1094	747	590	-157	747	1685	-937	23
Thursday 18. september 2003	0	1220	1220	795	640	-155	795	1860	-1065	24
Friday 19. september 2003	0	1202	1202	782	625	-156	782	1827	-1046	24
Saturday 20. september 2003	0	1113	1113	705	586	-119	705	1699	-995	24
Sunday 21. september 2003	0	745	745	526	463	-63	526	1208	-682	24
Monday 22. september 2003	0	1181	1181	761	614	-146	761	1795	-1034	24
Thursday 25. september 2003	0	417	417	217	246	29	217	663	-446	10
Friday 26. september 2003	0	994	994	718	578	-141	718	1572	-853	24
Saturday 27. september 2003	0	890	890	644	533	-111	644	1423	-779	24
Sunday 28. september 2003	0	639	639	500	433	-67	500	1073	-573	24
Monday 29. september 2003	0	899	899	667	541	-125	667	1440	-774	24

AAMMDDc.res	
×	
Sidste del af filen:	. Start kl. 0:00.
dag:	time
pr.	pr.
Udskrift	Udskrift

ISO-1													
Monday 01.	. septembe	er 2003											
TOK	TcK	PratioK	EtavK	EtaisK	qK	WK	TOF	TCF	PratioF	EtavF	EtaisF	ЧF	WF
υ	0			1	kW	kW	c	C		e	ï	kW	kW
-8.0	27.2	2.818	0.892	0.626	73.0	19.6	-30.1	-7.9	1.969	0.838	0.593	23.5	4.5
-8,1	27.5	2.847	0.891	0.626	142.0	38.7	-30.1	-7.9	1.973	0.838	0.593	23.0	4.4
-8.1	27.1	2.821	0.892	0.626	68.8	18.5	-29.6	-8.0	1.937	0.842	0.594	25.2	4.6
-8.1	26.8	2.793	0.893	0.625	66.5	17.7	-30.4	-8.0	1.988	0.836	0.593	20.8	4.0
-8.1	28.0	2.883	0.889	0.628	70.4	19.5	-30.1	-8.0	1.973	0.838	0.593	24.2	4.6
-8.1	27.5	2.842	0.891	0.626	87.3	23.7	-30.0	-7.9	1.967	0.838	0.593	20.3	3.8
-8.0	26.8	2.788	0.893	0.625	131.2	34.8	-29.9	-7.9	1.964	0.839	0.593	23.6	4.5
-8.0	28.1	2.875	0.890	0.628	101.6	28.1	-30.1	-7.9	1.972	0.838	0.593	23.4	4.5
-7.9	29.5	2.979	0.886	0.631	144.4	41.8	-29.8	7.7-	1.960	0.839	0.594	35.7	6.7
-7.9	29.3	2.962	0.887	0.630	177.6	51.0	-29.8	1.7-	1.964	0.839	0.594	33.7	6.4
-8.0	29.3	2.969	0.886	0.630	133.4	38.4	-29.9	-7.8	1.967	0.839	0.594	31.6	6.0
-8.1	28.5	2.912	0.888	0.629	124.9	35.1	-29.7	-7.9	1.951	0.840	0.594	31.8	6.0
-8.0	28.4	2.902	0.889	0.628	164.5	46.0	-29.8	-7.8	1.958	0.840	0.594	31.7	6.0
-8.1	28.4	2.913	0.888	0.629	111.7	31.3	-29.3	-7.9	1.917	0.844	0.595	28.8	5.2
-7.9	28.3	2.885	0.889	0.628	129.5	36.0	-29.7	1.7-	1.958	0.840	0.594	31.0	5.8
-7.9	28.6	2.912	0.888	0.629	173.9	48.9	-29.6	1.7-	1.951	0.840	0.594	31.1	5.8
-8.0	28.2	2.890	0.889	0.628	118.2	32.8	-29.8	-7.8	1.952	0.840	0,594	28.2	5.3
-7.9	28.2	2.883	0.889	0.628	115.6	32.0	-29.8	-7.8	1.960	0.839	0.594	29.7	5.6
-7.9	27.9	2.863	0.890	0.627	135.9	37.3	-30.1	-7.8	1.981	0.837	0.593	28.9	5.5
-8.0	28.1	2.876	0.890	0.628	154.3	42.6	-29.7	-7.8	1.953	0.840	0.594	30.2	5.7
-8.0	27.1	2.804	0.892	0.625	83.4	22.3	-30.4	-7.8	1.996	0.835	0.593	24.3	4.7
-8.1	26.6	2.784	0.893	0.624	68.3	18.1	-29.7	-7.9	1.943	0.841	0.594	24.7	4.6
-8.0	27.0	2.794	0.893	0.625	91.9	24.5	-29.8	-7.8	1.955	0.840	0.594	29.4	5.5
-7.9	27.7	2.839	0.891	0.626	146.9	39.9	-30.0	-7.7	1.976	0.838	0.593	29.8	5.7
wF	WK	wTot ber	wTot mr	Afvigelse %									
125	779	974	1054	-7.6									

AAMMDDc.res	
X	
af filen	:00.
del	d. 6
Sidste	Start 1
dag:	time.
pr.	pr.
Udskrift	Udskrift

SO-2													
Monday 0	11. septer	ber 2003											
TOK	TcK	PratioK	EtavK	EtaisK	qK	wK	TOF	TcF	PratioF	EtavF	EtaisF	Ч	wF
0	0		а		kW	kW	υ	υ	,	1		kW	kW
-15.6	38.1	4.777	0.856	0.724	78.9	32.9	-34.4	37.2	9.685	0.681	0.689	12.7	9.2
-15.7	37.6	4.723	0.858	0.724	64.0	26.3	-34.4	37.2	9.653	0.682	0.690	13.0	9.4
-14.8	37.6	4.587	0.863	0.724	75.0	30.2	-34.4	37.2	9.654	0.682	0.690	13.3	9.6
-15.1	37.7	4.649	0.861	0.724	74.6	30.4	-34.6	37.3	9.781	0.677	0.688	13.4	9.9
-15.6	37.6	4.722	0.858	0.724	71.1	29.3	-34.5	37.1	9.717	0.680	0.689	13.7	9.9
-15.2	37.7	4.654	0.861	0.724	71.5	29.1	-34.5	37.3	9.736	0.679	0.689	13.6	10.0
-14.9	37.4	4.567	0.864	0.724	74.9	30.0	-34.6	36.0	9.502	0.687	0.689	13.6	9.6
-15.1	37.0	4.564	0.864	0.723	80.3	32.0	-34.5	37.4	9.749	0.678	0.689	22.1	16.1
-14.5	36.9	4.454	0.868	0.723	107.3	41.9	-34.7	37.8	9.932	0.672	0.688	27.1	20.1
-14.7	37.8	4.590	0.863	0.724	111.4	44.8	-34.4	37.6	9.773	0.678	0.689	28.4	20.1
-15.4	37.1	4.639	0.861	0.723	106.2	43.0	-34.8	37.9	10.017	0.669	0.687	33.1	24.6
-15.5	38.1	4.761	0.857	0.724	110.0	45.9	-35.2	37.8	10.178	0.663	0.684	29.3	22.0
-15.2	38.1	4.704	0.859	0.724	111.1	46.0	-35.1	37.9	10.144	0.664	0.685	29.3	22.0
-15.5	37.8	4.710	0.859	0.724	101.1	41.7	-34.0	37.8	9.679	0.681	0.691	30.4	21.5
-15.5	37.6	4.691	0.859	0.724	107.0	43.7	-34.6	37.9	9.925	0.672	0.688	31.5	23.2
-15.7	37.4	4.704	0.859	0.724	107.6	44.1	-35.2	37.8	10.134	0.665	0.685	31.0	23.2
-15.1	37.8	4.657	0.861	0.724	110.1	45.0	-34.9	37.7	10.016	0.669	0.686	25.8	19.2
-15.0	37.8	4.641	0.861	0.724	109.6	44.7	-34.8	37.7	9.978	0.670	0.687	21.2	15.7
-14.8	37.9	4.620	0.862	0.724	109.8	44.7	-34.3	37.9	9.796	0.677	0.689	23.6	16.8
-15.3	38.1	4.727	0.858	0.724	107.0	44.2	-34.5	37.8	9.841	0.675	0.689	24.0	17.5
-15.2	37.3	4.607	0.862	0.724	89.4	36.1	-34.8	36.8	9.736	0.679	0.688	19.4	14.1
-15.3	37.9	4.696	0.859	0.724	76.5	31.5	-34.7	37.4	9.844	0.675	0.688	14.4	10.6
-15.2	37.6	4.653	0.861	0.724	74.6	30.5	-34.7	37.3	9.832	0.676	0.688	14.1	10.3
-15.2	37.8	4.659	0.861	0.724	71.6	29.3	-34.9	37.4	9.908	0.673	0.687	15.1	11.2
wK maalt	wK ber	Afvigelse	wF maalt	wF ber	Afvigelse								
537	897	67.3	963	376	-60.9								

ISO-3													
Monday (01. septemb	ber 2003											
TOK	TcK	PratioK	EtavK	EtaisK	qK	wK	TOF	TCF	PratioF	EtavF	EtaisF	ЧF	wF
0	0				kW	kw	o	U	1			kW	kW
-8.0	21.9	2.451	0.885	0.591	72.2	16.5	-29.9	-7.9	1.958	0.843	0.582	15.4	3.1
-8.0	21.7	2.430	0.885	0.590	76.4	17.2	-29.9	-7.6	1.972	0.841	0.582	14.1	2.8
-8.0	21.8	2.435	0.885	0.591	75.3	17.0	-29.8	-7.8	1.959	0.843	0.582	13.8	2.8
-8.1	21.9	2.454	0.884	0.591	83.9	19.1	-30.0	-7.9	1.966	0.842	0.582	13.8	2.8
-8.1	22.0	2.463	0.884	0.592	83.7	19.2	-29.8	-7.8	1.955	0.843	0.582	14.2	2.8
-8.1	21.1	2.402	0.886	0.588	65.3	14.5	-29.7	-8.0	1.942	0.845	0.582	13.6	2.7
-7.8	22.4	2.463	0.884	0.593	95.6	21.9	-29.9	-7.6	1.975	0.841	0.582	15.3	3.1
-8.0	22.5	2.484	0.884	0.594	106.1	24.5	-30.0	-7.5	1.984	0.840	0.582	20.4	4.2
-7.9	24.0	2.579	0.882	0.601	124.2	30.1	-30.2	-7.3	2.012	0.837	0.581	23.9	5.0
-7.9	25.0	2.650	0.881	0.605	130.4	32.6	-29.5	-7.5	1.955	0.843	0.583	27.3	5.4
-8.0	25.2	2.668	0.880	0.606	122.5	30.9	-29.7	7.7-	1.960	0.843	0.582	25.1	5.0
-8.1	25.3	2.685	0.880	0.607	115.2	29.3	-29.3	7.7-	1.934	0.846	0.583	25.9	5.0
-7.9	25.3	2.668	0.880	0.607	123.3	31.2	-29.8	-7.3	1.981	0.841	0.582	24.0	4.9
-7.9	25.2	2.667	0.880	0.606	122.1	30.9	-29.9	-7.6	1.979	0.841	0.582	24.4	4.9
-8.1	25.5	2.693	0.880	0.608	128.3	32.8	-29.8	-7.8	1.961	0.842	0.582	24.6	4.9
-8.1	25.3	2.689	0.880	0.607	120.0	30.6	-29.9	-7.7	1.970	0.842	0.582	22.5	4.5
-8.0	25.0	2.656	0.880	0.605	120.2	30.2	-29.9	-7.7	1.969	0.842	0.582	23.7	4.8
-8.0	24.5	2.617	0.881	0.603	109.2	26.9	-29.9	-7.2	2.004	0.838	0.582	20.1	4.2
-8.0	24.9	2.651	0.881	0.605	115.1	28.8	-29.9	-7.5	1.981	0.840	0.582	20.9	4.2
-7.9	23.8	2.570	0.882	0.600	113.8	27.6	-30.1	-7.4	2.003	0.838	0.581	18.2	3.8
-8.0	22.2	2.470	0.884	0.593	100.3	23.1	-29.9	-7.6	1.976	0.841	0.582	15.3	3.1
-8.0	21.6	2.425	0.885	0.590	84.6	19.1	-29.5	-7.6	1.950	0.844	0.583	16.4	3.3
-8.1	22.5	2.492	0.884	0.594	92.3	21.5	-29.8	-7.7	1.967	0.842	0.582	19.7	3.9
-8.0	22.6	2.497	0.884	0.595	96.1	22.4	-30.0	-7.7	1.977	0.841	0.582	17.9	3.6
wTot m	wTot ber	Afvigelse											
1548	750	798											

Udskrift pr. dag: Sidste del af filen: X_AAMMDDc.rcs Udskrift pr. time. Start kl. 0:00.

		WF	kW	18.6	18.9	17.2	19.8	18.4	19.1	18.8	20.8	25.5	32.8	33.7	31.6	30.2	28.5	32.4	29.2	26.4	25.6	26.7	24.2	24.1	21.2	19.3	
		٩F	kW	22.0	22.3	21.1	25.2	21.8	22.8	22.9	24.2	31.6	38.2	39.1	35.9	34.2	32.1	36.5	32.4	30.4	28.9	30.5	27.9	28.2	26.4	23.2	
		EtaisF		0.532	0.533	0.544	0.548	0.528	0.530	0.538	0.532	0.544	0.545	0.545	0.538	0.536	0.532	0.533	0.531	0.533	0.533	0.533	0.530	0.534	0.547	0.535	
		EtavF	4	0.943	0.944	0.957	0.965	0.940	0.943	0.952	0.942	0.956	0.954	0.955	0.946	0.945	0.940	0.940	0.938	0.942	0.941	0.941	0.937	0.944	0.962	0.948	
		PratioF		9.532	9.498	9.227	9.002	9.509	9.470	9.301	9.593	9.311	9.553	9.513	9.707	9.703	9.770	9.912	9.860	9.650	9.747	9.680	9.808	9.560	9.126	9.393	
		TCF	0	31.4	31.3	31.3	30.3	30.5	30.6	30.8	32.0	32.1	34.3	34.1	34.2	33.8	33.5	34.9	34.0	32.7	33.5	32.8	33.2	32.1	31.2	30.9	
		TOF	υ	-36.5	-36.5	-35.8	-35.8	-37.0	-36.8	-36.3	-36.3	-35.5	-34.9	-34.9	-35.3	-35.5	-35.9	-35.4	-35.8	-36.0	-35.8	-36.1	-36.1	-36.2	-35.6	-36.4	
		wK	kW	30.2	30.5	31.0	29.7	29.5	29.4	37.6	45.6	55.5	62.8	62.2	63.8	57.0	57.4	67.0	63.9	52.7	50.6	44.7	37.7	34.3	32.7	30.1	
		ąК	kW	88.7	89.2	90.5	87.7	86.9	88.4	102.4	124.0	142.6	150.2	146.0	147.6	131.7	136.9	146.3	140.7	128.3	128.4	124.5	109.6	99.8	95.5	89.3	
		EtaisK		0.652	0.652	0.652	0.651	0.651	0.649	0.657	0.657	0.658	0.659	0.658	0.658	0.658	0.658	0.658	0.657	0.658	0.658	0.655	0.653	0.653	0.652	0.651	and
		EtavK		1.008	1.008	1.008	1.008	1.008	1.008	1.008	1.008	1.007	1.007	1.007	1.007	1.007	1.007	1.007	1.006	1.007	1.007	1.008	1.008	1.008	1.008	1.008	
	er 2003	PratioK	,	3.693	3.702	3.696	3.660	3.665	3.606	4.053	4.049	4.241	4.482	4.562	4.589	4.608	4.499	4.791	4.807	4.435	4.292	3.858	3.722	3.730	3.703	3.652	
	. septemb	TcK	c	29.9	30.1	30.1	29.7	29.8	29.3	30.4	30.6	32.7	35.1	35.7	36.4	36.4	35.3	38.3	37.6	34.4	32.9	31.8	30.3	30.3	30.3	29.6	
SO-4	Monday 01	TOK	0	-13.3	-13.3	-13.2	-13.2	-13.2	-13.1	-15.6	-15.4	-15.2	-15.0	-15.2	-14.9	-14.9	-15.1	-14.7	-15.3	-15.3	-15.4	-13.2	-13.2	-13.3	-13.1	-13.2	

Udskrift pr. dag: Sidste del af filen: X_AAMMDDc.res Udskrift pr. time. Start kl. 0:00.

etaF COPFt eta
1.86 0.4
1.85 0.4
1.88 0.4
1.84 0.4
1.85 0.4
1.86 0.4
1.86 0.4
1.86 0.4
1.87 0.4
1.87 0.4
1.86 0.4
1.87 0.4
1.87 0.4
1.89 0.4
1.87 0.4
1.87 0.4
1.87 0.4
1.87 0.4
1.85 0.4
1.87 0.4
1.84 0.4
1.87 0.4
1.87 0.4
1.86 0.4

Udskrift pr. dag. Fil: X_AAMMDDfugt.res

		Fugt	%	39.1	35.9	35.2	34.8	34.4	34.2	35.7	37.5	37.0	37.3	38.2	37.5	37.1	35.8	35.1	34.3	34.4	33.8	34.6	35.3	34.7	33.4	33.6	33.4
		Tude	v	20.9	21.1	21.1	21.0	20.8	20.4	20.8	20.9	19.5	18.0	20.0	20.0	20.9	21.4	22.2	22.0	22.2	21.4	20.0	20.0	19.3	20.4	20.7	19.9
		Tinde	o	24.9	24.8	24.0	23.6	23.4	23.3	23.2	23.3	24.1	24.5	24.6	24.6	24.6	24.8	24.9	24.9	24.9	25.0	24.8	24.9	24.8	24.2	23.7	23.3
		etaK		0.500	0.503	0.504	0.503	0.502	0.503	0.505	0.506	0.508	0.505	0.504	0.499	0.499	0.501	0.504	0.502	0.501	0.501	0.501	0.501	0.504	0.500	0.502	0.502
		CopK		2.40	2.43	2.48	2.45	2.43	2.45	2.50	2.51	2.56	2.49	2.47	2.40	2.42	2.43	2.45	2.44	2.45	2.45	2.46	2.42	2.48	2.43	2.45	2.45
		qK/qKm		0.45	0.36	0.43	0.42	0.40	0.41	0.43	0.46	0.61	0.63	0.60	0.63	0.63	0.57	0.61	0.61	0.63	0.62	0.62	0.61	0.51	0.43	0.42	0.41
		TcK	U	38.1	37.6	37.6	37.7	37.6	37.7	37.4	37.0	36.9	37.8	37.1	38.1	38.1	37.8	37.6	37.4	37.8	37.8	37.9	38.1	37.3	37.9	37.6	37.8
		TOK	υ	-15.6	-15.7	-14.8	-15.1	-15.6	-15.2	-14.9	-15.1	-14.5	-14.7	-15.4	-15.5	-15.2	-15.5	-15.5	-15.7	-15.1	-15.0	-14.8	-15.3	-15.2	-15.3	-15.2	-15.2
		etaF		0.412	0.413	0.414	0.411	0.413	0.412	0.420	0.413	0.411	0.426	0.411	0.409	0.408	0.425	0.413	0.410	0.410	0.410	0.424	0.413	0.415	0.411	0.412	0.410
		COPF		1.37	1.38	1.38	1.36	1.37	1.37	1.42	1.37	1.35	1.41	1.35	1.33	1.33	1.42	1.36	1.34	1.34	1.35	1.40	1.37	1.38	1.36	1.36	1.35
		qF/qFm		0.33	0.34	0.35	0.35	0.36	0.36	0.36	0.58	0.71	0.75	0.87	0.77	0.77	0.80	0.83	0.82	0.68	0.56	0.62	0.63	0.51	0.38	0.37	0.40
	er 2003	TcF	c	37.2	37.2	37.2	37.3	37.1	37.3	36.0	37.4	37.8	37.6	37.9	37.8	37.9	37.8	37.9	37.8	37.7	37.7	37.9	37.8	36.8	37.4	37.3	37.4
	. septembe	TOF	o	-34.4	-34.4	-34.4	-34.6	-34.5	-34.5	-34.6	-34.5	-34.7	-34.4	-34.8	-35.2	-35.1	-34.0	-34.6	-35.2	-34.9	-34.8	-34.3	-34.5	-34.8	-34.7	-34.7	-34.9
SO-2	Monday 01	Tid	н	0	-	2	3	4	5	9	7	8	6	10	11	12	13	14	15	16	17	18	19	20	21	22	23

5
50
f
P
P
\geq
5
7
1
-
×
Ξ
dag.
pr.
Ð
·E
SI
p

	L	Fugt	%	45.7	46.1	44.7	43.4	42.2	41.3	40.7	39.2	41.4	42.1	41.7	41.0	39.9	38.8	37.4	37.1	37.2	37.4	37.9	38.9	40.1	41.6	41.4	41.0
	-	Inde	v	12.2	12.3	12.1	11.6	11.3	11.5	11.4	13.1	13.7	13.7	15.3	16.6	17.7	17.8	18.4	17.5	17.3	15.9	15.3	13.1	12.5	11.8	11.4	10.9
	-	Tinde	o	20.7	20.7	21.0	21.7	21.9	21.8	21.7	21.4	21.4	21.5	21.5	21.6	21.7	21.6	21.5	21.5	21.5	21.6	21.8	21.7	21.4	20.8	20.7	20.7
		etaK		0.480	0.483	0.483	0.482	0.480	0.486	0.484	0.480	0.479	0.481	0.481	0.477	0.476	0.475	0.477	0.475	0.480	0.481	0.479	0.472	0.473	0.489	0.486	0.481
		Copk		4.38	4.44	4.42	4.38	4.36	4.49	4.36	4.32	4.12	4.00	3.96	3.93	3.95	3.96	3.92	3.92	3.98	4.05	3.99	4.13	4.34	4.43	4.30	4.29
		qK/qKm		0.50	0.53	0.52	0.58	0.58	0.45	0.66	0.73	0.86	0.90	0.84	0.79	0.85	0.84	0.88	0.83	0.83	0.75	0.79	0.78	0.69	0.58	0.64	0.66
	2	TcK	υ	21.0	20.9	21.0	21.1	21.1	20.6	21.6	21.5	22.9	24.0	24.2	24.1	24.0	24.0	24.2	24.0	24.0	23.5	23.8	22.4	20.9	21.3	21.9	21.7
		TOK	υ	-8.0	-8,0	-8.0	-8.1	-8.1	-8.1	-7.8	-8.0	-7.9	-7.9	-8.0	-8.1	-7.9	-7.9	-8.1	-8.1	-8.0	-8.0	-8.0	-7.9	-8.0	-8.0	-8.1	-8.0
	i	etaFt		0.379	0.376	0.379	0.378	0.378	0.377	0.382	0.380	0.389	0.400	0.403	0.401	0.399	0.399	0.403	0.399	0.400	0.392	0.398	0.385	0.376	0.379	0.384	0.383
		COPFt	1	1.81	1.80	1.81	1.80	1.81	1.82	1.81	1.80	1.78	1.82	1.82	1.83	1.80	1.80	1.81	1.80	1.81	1.78	1.80	1.78	1.80	1.82	1.80	1.80
	1	etaF	ä	0.453	0.452	0.453	0.452	0.453	0.454	0.452	0.453	0.453	0.456	0.456	0.457	0.454	0.454	0.455	0.455	0.454	0.452	0.454	0.452	0.453	0.454	0.454	0.453
		COPF	,	5.02	4.95	5.01	4.98	5.03	5.09	4.93	4.91	4.81	5.05	5.03	5.15	4.93	4.94	5.02	4.98	4.98	4.83	4.93	4.83	4.94	5.05	4.98	4.94
	1	qF/qFm		0.48	0.44	0.43	0.43	0.44	0.42	0.48	0.64	0.75	0.85	0.78	0.81	0.75	0.76	0.77	0.70	0.74	0.63	0.65	0.57	0.48	0.51	0.61	0.56
2003	Der ZUU3	TCF	0	-7.9	-7.6	-7.8	-7.9	-7.8	-8.0	-7.6	-7.5	-7.3	-7.5	1.7-	7.7-	-7.3	-7.6	-7.8	-7.7	-7.7-	-7.2	-7.5	-7.4	-7.6	-7.6	-7.7	7.7-
motoon 1	1. septem	TOF	0	-29.9	-29.9	-29.8	-30.0	-29.8	-29.7	-29.9	-30.0	-30.2	-29.5	-29.7	-29.3	-29.8	-29.9	-29.8	-29.9	-29.9	-29.9	-29.9	-30.1	-29.9	-29.5	-29.8	-30.0
SO-3	Monday U	Lid	н	0	-	2	0	4	5	9	7	8	6	10	11	12	13	14	15	16	17	18	19	20	21	22	23

Udskrift pr. dag. Fil: X_AAMMDDfugt.res

		Fugt	%	38.5	39.5	40.4	40.8	41.1	41.8	41.6	40.2	39.3	38.8	38.3	37.4	36.9	34.8	33.9	32.5	32.5	33.1	33.5	34.2	35.6	35.3	35.5	35.4
		Tude	U	24.0	23.6	23.2	23.1	23.0	23.0	23.3	23.6	23.8	23.8	23.7	23.8	23.8	23.8	23.8	23.8	23.9	24.0	24.0	24.0	23.9	23.4	23.3	23.7
		Tinde	U	15.5	16.1	16.1	15.6	15.3	15.3	14.6	14.6	15.3	16.3	17.6	19.0	19.7	19.7	20.1	20.4	19.7	19.1	18.3	16.5	15.5	14.8	14.3	13.9
		etaK		0.488	0.487	0.487	0.488	0.488	0.489	0.486	0.485	0.477	0.465	0.462	0.459	0.460	0.465	0.449	0.452	0.469	0.476	0.482	0.487	0.488	0.487	0.489	0.487
		CopK		2.93	2.92	2.93	2.96	2.95	3.01	2.72	2.72	2.57	2.39	2.35	2.31	2.31	2.38	2.19	2.20	2.43	2.54	2.79	2.91	2.91	2.92	2.97	2.90
		qK/qKmax	,	0.44	0.45	0.45	0.44	0.43	0.44	0.51	0.62	0.71	0.75	0.73	0.74	0.66	0.68	0.73	0.70	0.64	0.64	0.62	0.55	0.50	0.48	0.45	0.51
		TcK	c	29.9	30.1	30.1	29.7	29.8	29.3	30.4	30.6	32.7	35.1	35.7	36.4	36.4	35.3	38.3	37.6	34.4	32.9	31.8	30.3	30.3	30.3	29.6	30.4
		TOK	c	-13.3	-13.3	-13.2	-13.2	-13.2	-13.1	-15.6	-15.4	-15.2	-15.0	-15.2	-14.9	-14.9	-15.1	-14.7	-15.3	-15.3	-15.4	-13.2	-13.2	-13.3	-13.1	-13.2	-13.1
		etaF		0.331	0.332	0.341	0.353	0.336	0.337	0.341	0.327	0.342	0.317	0.316	0.311	0.313	0.313	0.309	0.308	0.320	0.313	0.319	0.321	0.326	0.344	0.338	0.329
		COPF		1.18	1.18	1.23	1.27	1.19	1.19	1.22	1.17	1.24	1.17	1.16	1.13	1.13	1.13	1.13	1.11	1.15	1.13	1.14	1.15	1.17	1.24	1.20	1.18
		qF/qFmax		0.39	0.40	0.38	0.45	0.39	0.41	0.41	0.43	0.56	0.68	0.70	0.64	0.61	0.57	0.65	0.58	0.54	0.52	0.54	0.50	0.50	0.47	0.41	0.40
	r 2003	TcF	o	31.4	31.3	31.3	30.3	30.5	30.6	30.8	32.0	32.1	34.3	34.1	34.2	33.8	33.5	34.9	34.0	32.7	33.5	32.8	33.2	32.1	31.2	30.9	32.0
	Septembe	TOF	v	-36.5	-36.5	-35.8	-35.8	-37.0	-36.8	-36.3	-36.3	-35.5	-34.9	-34.9	-35.3	-35.5	-35.9	-35.4	-35.8	-36.0	-35.8	-36.1	-36.1	-36.2	-35.6	-36.4	-36.0
SO-4	Monday 01.	Tid	н	0	t	2	3	4	5	9	7	8	6	10	11	12	13	14	15	16	17	18	19	20	21	22	23

	õ
	Ξ
	50
\$	Ħ.
4	
4	2
2	Z
1	2
1	5
	2
2	-
1	×
	• •
1	Ŧ
	dag.
	pr.
1	H
0	5
2	S
	3
	_

.....

Udskrift pr. dag. Fil: X_AAMMDDrbutik.res

Monday O1. september 2003 Tid qK/qKnom qF/qFnom H - - - D 0.56 0.73 0.73 1 1.10 0.72 0.73 2 0.51 0.73 0.72 3 0.51 0.73 0.73 4 0.51 0.65 0.73 5 0.51 0.65 0.73 6 1.01 0.73 0.78 7 0.54 0.75 0.73 6 1.01 0.73 0.73 10 1.12 1.11 0.73 8 1.12 1.05 0.99 11 0.78 0.73 0.99 12 1.03 0.91 0.91 13 0.86 0.90 9 14 1.00 0.91 0.91 15 1.34 0.92 16 16 0.689 0.90 9 17 <th></th> <th></th> <th></th> <th></th>				
Tid gK/qKnom gF/qFnom H - - 0 0.56 0.73 1 1.10 0.72 2 0.53 0.78 3 0.51 0.72 4 0.53 0.78 5 0.51 0.65 4 0.54 0.78 5 0.67 0.63 6 1.01 0.73 7 0.78 0.73 8 1.12 1.11 9 1.37 1.05 10 1.03 0.98 11 0.97 0.99 12 1.27 0.99 13 0.86 0.97 14 1.00 0.97 15 1.34 0.97 16 0.91 0.97 17 0.89 0.97 18 1.05 0.90 19 1.19 0.94 20 0.64 <td< th=""><th>september 2003</th><th></th><th></th><th></th></td<>	september 2003			
H - - 0 0.56 0.73 1 1.10 0.72 2 0.53 0.78 3 0.51 0.65 3 0.51 0.65 4 0.54 0.76 5 0.67 0.65 4 0.54 0.78 5 0.67 0.63 6 1.01 0.73 7 0.78 0.73 8 1.12 1.11 9 1.37 1.05 10 1.03 0.99 11 0.97 0.99 12 1.27 0.99 13 0.86 0.90 14 1.00 0.97 15 1.27 0.99 16 0.91 0.97 15 1.34 0.97 16 0.91 0.97 17 0.89 0.92 18 1.05 0.90 19 1.19 0.94 20 0.64 0.76 21 0.53 0.71 22 0.71 0.91	K/qKnom qF/qFnom	qKrefb	qFrefb	wTotrefb
0 0.56 0.73 1 1.10 0.72 2 0.53 0.78 3 0.51 0.78 3 0.51 0.75 4 0.51 0.75 5 0.54 0.75 6 1.01 0.75 7 0.78 0.75 8 1.01 0.73 9 1.37 0.63 10 1.03 0.73 9 1.37 1.05 11 0.73 0.98 11 0.97 0.99 12 1.03 0.96 13 0.86 0.97 14 1.00 0.97 15 1.34 0.97 16 0.91 0.97 17 0.89 0.92 18 1.05 0.90 19 1.19 0.94 20 0.64 0.76 21 0.53 0		kW	kw	kW
1 1.10 0.72 2 0.53 0.78 3 0.51 0.65 4 0.54 0.65 5 0.67 0.65 6 1.01 0.75 7 0.67 0.63 6 1.01 0.75 7 0.78 0.75 8 1.12 1.11 9 1.37 1.05 10 1.03 0.98 11 0.97 0.99 12 1.03 0.98 13 0.86 0.97 14 1.00 0.97 15 1.34 0.97 16 0.91 0.97 17 0.89 0.97 18 1.05 0.90 19 1.19 0.94 20 0.64 0.76 21 0.53 0.91 22 0.53 0.77 <tr td=""> 0.91 </tr>	0.56 0.73	34.6	24.2	26.1
2 0.53 0.78 3 0.51 0.65 4 0.54 0.75 5 0.67 0.63 6 1.01 0.73 7 0.58 0.73 8 1.01 0.73 8 1.01 0.73 9 1.37 1.05 10 1.37 1.05 11 0.97 0.99 11 0.97 0.99 11 0.97 0.99 12 1.27 0.99 13 0.86 0.90 14 1.00 0.97 15 1.34 0.97 16 0.91 0.97 16 0.91 0.92 18 1.05 0.90 19 1.19 0.94 20 0.64 0.76 21 0.53 0.71 221 0.53 0.77 0.91 0.91 <td>1.10 0.72</td> <td>88.0</td> <td>23.7</td> <td>41.5</td>	1.10 0.72	88.0	23.7	41.5
3 0.51 0.65 4 0.54 0.75 5 0.67 0.63 6 1.01 0.73 7 0.78 0.73 8 1.01 0.73 9 1.12 1.11 9 1.37 1.05 10 1.03 0.98 11 0.97 0.90 12 1.07 0.99 13 0.86 0.90 14 1.00 0.97 15 1.34 0.97 16 0.91 0.97 17 0.91 0.97 16 0.91 0.97 17 0.91 0.97 16 0.91 0.92 18 1.05 0.90 19 1.19 0.94 20 0.63 0.76 21 0.53 0.71 221 0.53 0.77	0.53 0.78	29.9	25.9	25.5
4 0.54 0.75 5 0.67 0.63 6 1.01 0.73 7 0.78 0.73 8 1.12 1.11 9 1.37 1.05 10 1.37 1.05 11 0.97 0.98 11 0.97 0.99 12 1.03 0.98 12 1.27 0.99 13 0.86 0.90 14 1.00 0.97 15 1.34 0.97 16 0.91 0.97 17 0.89 0.97 18 1.05 0.90 19 1.19 0.94 20 0.64 0.76 21 0.53 0.91 22 0.53 0.77 22 0.71 0.91	0.51 0.65	32.0	21.4	23.9
5 0.67 0.63 7 0.78 0.73 7 0.78 0.73 8 1.01 0.73 8 1.12 1.11 9 1.37 1.05 10 1.03 0.98 11 0.97 0.99 11 0.97 0.99 11 0.97 0.99 11 0.97 0.99 12 1.27 0.99 13 0.86 0.90 14 1.00 0.97 15 1.34 0.97 16 0.91 0.97 17 0.89 0.97 16 1.06 0.97 18 1.05 0.90 19 1.19 0.94 20 0.53 0.77 21 0.53 0.77 22 0.71 0.91	0.54 0.75	31.9	24.9	25.7
6 1.01 0.73 7 0.78 0.73 8 1.12 1.11 9 1.37 1.05 10 1.37 1.05 9 1.37 1.05 11 0.97 0.98 11 0.97 0.99 12 1.27 0.99 13 0.86 0.90 14 1.00 0.97 15 1.34 0.97 16 0.91 0.97 17 0.89 0.97 18 1.06 0.92 19 1.19 0.94 20 0.53 0.94 21 0.53 0.94 21 0.53 0.91 22 0.71 0.91	0.67 0.63	48.5	20.9	28.4
7 0.78 0.73 8 1.12 1.11 9 1.37 1.05 10 1.03 0.98 11 0.97 0.99 12 1.05 0.99 11 0.97 0.99 12 1.27 0.99 12 1.27 0.99 13 0.86 0.90 14 1.00 0.97 15 1.34 0.97 16 0.91 0.88 17 0.89 0.92 18 1.05 0.90 19 1.19 0.94 20 0.53 0.94 21 0.53 0.91 21 0.53 0.91 22 0.71 0.91	1.01 0.73	79.2	24.3	39.1
8 1.12 1.11 9 1.37 1.05 10 1.03 0.98 11 0.97 0.99 11 0.97 0.99 12 1.27 0.99 13 0.86 0.90 14 1.00 0.97 15 1.34 0.97 16 0.91 0.97 17 0.89 0.97 18 1.00 0.92 19 1.19 0.94 20 0.53 0.94 21 0.53 0.76 22 0.53 0.71	0.78 0.73	56.5	24.2	32.4
9 1.37 1.05 10 1.03 0.98 11 0.97 0.99 12 1.27 0.99 12 1.27 0.99 13 0.86 0.90 14 1.00 0.97 15 1.34 0.97 16 0.91 0.97 17 0.89 0.97 18 1.06 0.92 19 1.105 0.90 19 1.19 0.94 20 0.53 0.94 21 0.53 0.76 22 0.53 0.71	1.12 1.11	78.3	36.8	45.5
10 1.03 0.98 11 0.97 0.99 12 1.27 0.99 13 0.86 0.90 14 1.00 0.97 15 1.34 0.97 16 0.91 0.86 17 0.99 0.97 18 1.00 0.92 18 1.05 0.90 19 1.19 0.94 20 0.53 0.94 21 0.53 0.94 21 0.53 0.94 22 0.53 0.77 22 0.71 0.91	1.37 1.05	105.6	34.7	52.3
11 0.97 0.99 12 1.27 0.99 13 0.86 0.90 14 1.00 0.97 15 1.34 0.97 16 0.91 0.88 17 0.89 0.97 18 1.05 0.92 19 1.19 0.92 20 0.64 0.92 21 0.53 0.94 22 0.53 0.77	1.03 0.98	73.6	32.5	41.9
12 1.27 0.99 13 0.86 0.90 14 1.00 0.97 15 1.34 0.97 16 0.91 0.88 17 0.89 0.92 18 1.05 0.90 19 1.19 0.94 20 0.64 0.76 21 0.53 0.71 22 0.71 0.91	0.97 0.99	66.9	32.8	40.1
13 0.86 0.90 14 1.00 0.97 15 1.34 0.97 16 0.91 0.88 17 0.89 0.92 18 1.05 0.90 19 1.19 0.94 20 0.64 0.76 21 0.53 0.77 22 0.71 0.91	1.27 0.99	97.3	32.7	48.9
14 1.00 0.97 15 1.34 0.97 16 0.91 0.88 17 0.89 0.92 18 1.05 0.90 18 1.05 0.90 19 1.19 0.94 20 0.64 0.76 21 0.53 0.77 22 0.71 0.91	0.86 0.90	59.6	29.7	36.1
15 1.34 0.97 16 0.91 0.88 17 0.89 0.92 18 1.05 0.90 19 1.105 0.94 20 0.64 0.76 21 0.53 0.77 22 0.71 0.91	1.00 0.97	71.1	32.0	40.7
16 0.91 0.88 17 0.89 0.92 18 1.05 0.90 19 1.19 0.94 20 0.64 0.76 21 0.53 0.77 22 0.71 0.91	1.34 0.97	105.1	32.1	50.7
17 0.89 0.92 18 1.05 0.90 19 1.19 0.94 20 0.64 0.76 21 0.53 0.77 22 0.71 0.91	0.91 0.88	65.0	29.1	37.5
18 1.05 0.90 19 1.19 0.94 20 0.64 0.76 21 0.53 0.77 22 0.71 0.91	0.89 0.92	61.6	30.6	37.3
19 1.19 0.94 20 0.64 0.76 21 0.53 0.77 22 0.71 0.91	1.05 0.90	77.9	29.8	41.7
20 0.64 0.76 21 0.53 0.77 22 0.71 0.91	1.19 0.94	90.9	31.1	46.1
21 0.53 0.77 22 0.71 0.91	0.64 0.76	41.7	25.0	28.7
22 0.71 0.91	0.53 0.77	29.9	25.4	25.3
	0.71 0.91	43.7	30.3	31.9
23 1.14 0.93	1.14 0.93	85.5	30.7	44.4

Udskrift pr. dag. Fil: X_AAMMDDrbutik.res

-2					
nday	01. septemb	er 2003			
Tid	qK/qKnom	qF/qFnom	qKrefb	qFrefb	wTotrefb
I			kW	kW	kW
0	1.37	0.55	101.2	15.8	42.4
-	1.11	0.57	82.0	16.2	36.3
2	1.30	0.58	96.3	16.5	40.3
3	1.30	0.59	95.7	16.8	40.7
4	1.23	0.60	91.2	17.0	39.8
5	1.24	0.60	91.7	17.0	39.6
9	1.30	0.60	96.1	17.0	40.7
7	1.39	0.96	103.0	27.5	49.2
8	1.86	1.18	137.6	33.8	63.4
6	1.93	1.24	142.9	35.4	65.4
10	1.84	1.44	136.3	41.2	68.6
11	1.91	1.28	141.1	36.6	67.8
12	1.93	1.28	142.5	36.5	67.7
13	1.76	1.33	129.7	37.9	63.6
14	1.86	1.38	137.3	39.3	67.6
15	1.87	1.35	138.0	38.7	68.3
16	1.91	1.13	141.2	32.2	64.5
17	1.90	0.92	140.5	26.4	60.7
18	1.91	1.03	140.8	29.4	61.7
19	1.86	1.05	137.2	29.9	61.7
20	1.55	0.85	114.7	24.2	51.3
21	1.33	0.63	98.1	18.0	42.4
22	1.30	0.61	95.7	17.5	41.3
53	1 24	0.66	91.8	18.9	40.8

	Г	ISO-4					
		Monday	01. septemb	er 2003	old roth	dEroth	wTotraft
0	refb	= =	-	-	kW	kW	kW
2 8	> 4	0	0.79	0.59	77.4	23.7	45.6
3 6	0 4	-	0.79	0.60	77.8	24.1	46.0
3 8		2	0.80	0.57	79.0	22.8	44.7
2 2	4	3	0.78	0.68	76.5	27.2	47.2
222	t, <	4	0.77	0.58	75.9	23.5	45.3
200	ţ u	2	0.79	0.61	77.1	24.6	46.4
a c	2	9	0.91	0.62	89.3	24.8	52.3
2 5		7	1.10	0.65	108.2	26.1	59.9
38	0	8	1.27	0.85	124.4	34.1	70.3
3 8	2	6	1.33	1.03	131.0	41.3	77.2
800	- 5	10	1.30	1.05	127.4	42.2	0.77
24		11	1.31	0.96	128.7	38.7	75.2
38	2 4	12	1.17	0.92	114.9	36.9	69.3
200	2 0	13	1.22	0.86	119.4	34.7	69.9
2 8	2 0	14	1.30	0.98	127.7	39.4	74.6
3 2	2	15	1.25	0.87	122.8	35.0	71.5
35	00	16	1.14	0.81	111.9	32.8	66.2
3	9	17	1.14	0.77	112.0	31.2	64.8
24		18	1.11	0.82	108.6	32.9	63.1
5 8	4 4	19	0.97	0.75	95.6	30.1	56.0
300	2 1	20	0.89	0.75	87.1	30.4	53.8
25		21	0.85	0.71	83.3	28.5	50.3
28 2	0,00	22	0.79	0.62	77.9	25.1	46.7
000		23	0.91	0.60	89.0	24.2	49.4

Udskrift pr. dag. Fil: X_AAMMDDrbutik.res

ISO-3					
Monday	01. septemb	er 2003			
Tid	qK/qKnom	qF/qFnom	qKrefb	qFrefb	wTotre
н	•	1	kW	kW	kW
0	0.62	0.37	45.8	12.3	22.6
-	0.66	0.34	50.8	11.2	23.5
2	0.65	0.33	50.1	11.0	23.2
Э	0.72	0.33	57.4	11.0	25.4
4	0.72	0.34	56.9	11.3	25.4
5	0.56	0.33	41.9	10.8	20.6
9	0.82	0.37	62.9	12.2	28.4
7	0.91	0.49	69.69	16.2	31.8
80	1.07	0.57	81.4	19.0	36.9
0	1.12	0.66	83.3	21.8	38.7
10	1.05	0.60	78.9	20.0	36.5
11	0.99	0.62	71.9	20.6	34.8
12	1.06	0.58	80.6	19.1	36.5
13	1.05	0.59	79.1	19.4	36.3
14	1.10	0.59	84.3	19.6	38.0
15	1.03	0.54	79.3	17.9	35.7
16	1.03	0.57	78.3	18.8	35.8
17	0.94	0.48	72.4	16.0	32.6
18	0.99	0.50	76.7	16.7	34.2
19	0.98	0.44	78.3	14.5	33.5
20	0.86	0.37	69.8	12.2	29.7
21	0.73	0.40	55.3	13.1	25.8
22	0.79	0.47	58.6	15.6	28.3
23	0.83	0.43	63.6	14.3	29.0