Oprensning af forureningen på depotet ved Høfde 42 ved hjælp af nul-valent jern

8 Litteraturliste

/1/ Teknik og Miljø, Ringkjøbing Amt (2001): Høfde 42. Undersøgelse af forureningssituationen ved høfde 42 og ”Cheminovahullet” på Harboøre Tange.

/2/ NIRAS Rådgivende ingeniører og planlæggere A/S (2001): Høfde 42, Harboøre Tange. Kemikalieaffaldsdepot. Afværgekatalog. Ringkjøbing Amt.

/3/ Kjeldsen, P. (2004): Reaktive vægge og filtre med jernspåner - en sammenfatning. Miljøstyrelsen, København. Miljøprojekt, 916. pp. 1-48.

/4/ Durant, N. & Cox, E. (2005): Nanoscale iron: An emerging technology for in situ treatment of halogenated organics and heavy metals in groundwater. ATV Møde Vintermøde om jord- og grundvandsforurening, ATV Jord og Grundvand, Kgs. Lyngby, 141-150.

/5/ Vastrup, T. (2005): Afprøvning af rensningsmetoder på pesticidforurenet grundvand. Eksamensprojekt. Institut for Miljø & Ressourcer, Danmarks Tekniske Universitet.

/6/ Fjordbøge, A. (2005): Evaluering af nul-valent jern til oprensning af høfde 42 depotet. Eksamensprojekt. Institut for Miljø & Ressourcer, Danmarks Tekniske Universitet.

/7/ Weisener, C., Sale, K.S., Smyth, D.J.A. & Blowes, D.W. (2005): Field column study using zerovalent iron for mercury removal from contaminated groundwater. Environmental Science & Technology, 39, 6306-6312.

/8/ Teknik og Miljø, Ringkjøbing Amt (2003): Høfde 42. Statusrapport over forureningssituationen ved høfde 42 på Harboøre Tange.

/9/ NIRAS Rådgivende ingeniører og planlæggere A/S (2004): Høfde 42, Harboøre Tange. Supplerende forureningsundersøgelser. Ringkjøbing Amt.

/10/ Teknik og Miljø, Ringkjøbing Amt (2004): A DNAPL hotspot of organophosphorous pesticides.

/11/ HOH Water Technology A/S (2001): Idekatalog. Afværgemuligheder over for restforureningen ved høfde 42, Harboøre Tange – Klitgrydedepotet og ”Cheminovahullet”. Ringkjøbing Amt.

/12/ NIRAS Rådgivende ingeniører og planlæggere A/S (2005): Harboøre Tange - Supplerende undersøgelser omkring planlagt spunsvæg. Ringkjøbing Amt

/13/ Hjemmeside for Ringkjøbing Amt: http://www.ringamt.dk/.

/14/ COWI A/S (2005): Høfdedepot på Harboøre Tange Afværgeforanstaltning baseret på indspunsning - Særlige Betingelser og Beskrivelser (SBB). Ringkjøbing Amt.

/15/ Gusmão, A. D., Campos, T. M. P., Nobre, M. M. M. & Vargas Jr., E. A. (2004): Laboratory tests for reactive barrier design. Journal of Hazardous Materials, 110, 105-112.

/16/ Schrick, B., Blough, J. L., Jones, A. D. & Mallouk, T. E. (2002): Hydrodechlorination of Trichloroethylene to Hydrocarbons Using Bimetallic Nickel Iron Nanoparticles. Chemistry of Materials, 14, 5140-5147.

/17/ Lowry, G. V. & Reinhard, M. (2001): Pd Catalyzed TCE Dechlorination in Water: Effect of [H2](aq) and H2 Utilizing Competitive Solutes on the TCE Dechlorination Rate and Product Distribution. Environmental Science & Technology, 35, 696-702.

/18/ Kamolpornwijit, W., Liang, L., West, O. R., Moline, G. R. & Sullivan, A. B. (2003): Preferential flow path development and its influence on long term PRB performance: column study. Journal of Contaminant Hydrology, 66, 161-178.

/19/ Karri, S., Sierra-Alvarez, R. & Field, J. A. (2005): Zero Valent Iron as an Electron-Donor for Methanogenesis and Sulfate Reduction in Anaerobic Sludge. Department of Chemical and Environmental Engineering, University of Arizona. Wiley InterScience.

/20/ Mackenzie, P. D., Horney, D. P. & Sivavec, T. M. (1999): Mineral precipitation and porosity losses in granular iron columns. Journal of Hazardous Materials, 68, 1-17.

/21/ Liu, Q. & Lowry, G. V. (2006): Effect of Particle Age (Fe0 Content) and Solution pH On NZVI Reactivity: H2 Evolution and TCE Dechlorination. Environmental Science & Technology, 40, 6085-6090.

/22/ Fernandez Sanchez, J. M., Sawvel, E. J. & Alvarez, P. J. J. (2004): Effect of Fe0 quantity on the efficiency of integrated microbial Fe0 treatment processes. Chemosphere, 54, 823-829.

/23/ Devlin, J. F., Klausen, J. & Schwarzenbach, R. P. (1998): Kinetics of Nitroaromatic Reduction on Granular Iron in Recirculating Batch Experiments. Environmental Science & Technology, 32, 1941-1947.

/24/ Gavaskar, A. R. (1999): Design and construction techniques for permeable reactive barriers. Journal of Hazardous Materials, 68, 41-71.

/25/ Envirometal Technologies, Inc. (1997): Metal-enhanced dechlorination of volatile organic compounds using an aboveground reactor. Innovative technology evaluation report. US Environmental Protection Agency. Report EPA/540/R-96/503. Washington, USA.

/26/ Daily W.D.; Blake, R.G. (2001): Passive above ground iron filings treatment of contaminated groundwater. Poster at Containment 2001, International Containment & remediation Technology Conference and Exhibition, Orlando, USA.

/27/ Ghauch, A., Rima, J., Amine, C. & Martin Bouyer, M. (1999): Rapid Treatment Of Water Contamined With Atrazine And Parathion With Zero Valent Iron. Chemosphere, 39, 1309-1315.

/28/ Agrawal, A. & Tratnyek, P. G. (1996): Reduction of Nitro Aromatic Compounds by Zero Valent Iron Metal. Environmental Science & Technology, 30, 153-160.

/29/ Novak, P. J., Daniels, L. & Parkin, G. F. (1998): Enhanced Dechlorination of Carbon Tetrachloride and Chloroform in the Presence of Elemental Iron and Methanosarcina barkeri, Methanosarcina thermophila, or Methanosaeta concillii. Environmental Science & Technology, 32, 1438-1443.

/30/ Schüth, C., Bill, M., Barth, J. A. C., Slater, G. F. & Kalin, R. M. (2003): Carbon isotope fractionation during dechlorination of TCE in batch experiments with iron samples from reactive barriers. Journal of Contaminant Hydrology, 66, 25-37.

/31/ Liu, Y., Majetich, S. A., Tilton, R. D., Sholl, D. S. & Lowry, G. V. (2005): TCE Dechlorination Rates, Pathways, and Efficiency of Nanoscale Iron Particles with Different Properties. Environmental Science & Technology, 39, 1338-1345.

/32/ Lowry, G. V. & Johnson, K. M. (2004): Congener-Specific Dechlorination of Dissolved PCBs by Microscale and Nanoscale Zerovalent Iron in a Water/Methanol Solution. Environmental Science and Technology, 38, 5208-5216.

/33/ Zhang, W. x. (2003): Nanoscale iron particles for environmental remediation: An overview. Journal of Nanoparticle Research, 5, 323-332.

/34/ Schrick, B., Hydutski, B. W., Blough, J. L. & Mallouk, T. E. (2004): Delivery Vehicles for Zerovalent Metal Nanoparticles in Soil and Groundwater. Chemistry of Materials, 16, 2187-2193.

/35/ Geiger, C. L., Clausen, C. A., Reinhart, D. R., Brooks, K., Major, D. & Quinn, J. (2001): The In Situ Treatment of DNAPL with Zero Valent Iron Emulsions. 3rd International Containment Technology Conference, Florida State University, Tallahassee. Orlando. 3 sider.

/36/ Tom Sale fra Colorado State University, Januar 2007, Personlig samtale.

/37/ Bozzini, C., Simpkin, T., Sale, T., Hood, D. & Lowder, B. (2006): DNAPL Remediation at Camp Lejeune Using ZVI-Clay Soil Mixing.

/38/ Olson, M. R. (2005): In situ remediation via admixing zero valent iron and clay: performance prediction. M. Sc. Thesis, Colorado State University, Fort Collins, Colorado.

/39/ Ashby, N. P. & Binks, B. P. (2000): Pickering emulsions stabilised by Laponite clay particles. Physical Chemistry Chemical Physics, 2, 5640-5646.

/40/ Abend, S., Bonnke, N., Gutschner, U. & Lagaly, G. (1998): Stabilization of emulsions by heterocoagulation of clay minerals and layered double hydroxides. Colloid Polymer Science, 276, 730-737

/41/ John Vogan fra EnviroMetal Technologies Inc. (ETI), Januar 2007, Personlig samtale.

/42/ Lynch, P. L. (1998): Deployment of an innovative thermally enhanced soil mixing process augmented with zero-valent iron. Environment, Safety and Health, Argonne National Laboratory, Illinois. U.S. Department of Energy.

/43/ Moos, L. P. (1998): Optimization of soil mixing technology through metallic iron addition. Environment, Safety and Health, Argonne National Laboratory, Illinois. U.S. Department of Energy.

/44/ Landis, R. C., Griffith, R. J., Shoemaker, S. H., Schultz, D. S. & Quinton, G. C. (1996): Development of an Integrated in-situ Remediation Technology. The DuPont Company.

/45/ Powell, R. M., Powell, P. D. & Puls, R. W. (2002): Economic Analysis of the Implementation of Permeable Reactive Barriers for Remediation of Contaminated Ground Water. National Risk Management Research Laboratory, U.S. Environmental Protection Agency.

/46/ Gavaskar, A., Tatar, L. & Condit, W. (2005): Cost and performance report nanoscale zero-valent iron technologies for source remediation. Naval Facilities Engineering Service Center, Californien.

/47/ Butler, L. C., Staiff, D. C., Sovocool, G. W. & Davis, J. E. (1981): Field disposal of methyl parathion using acidified powdered zinc. Journal of Environmental Science & Health, B16, 49-58.

/48/ Keum, Y. S. & Li, Q. X. (2004): Reduction of nitroaromatic pesticides with zero valent iron. Chemosphere, 54, 255-263.

/49/ Liu, Y., Yang, F., Yue, P.L. & Chen, G. (2001): Catalytic dechloriation of chlorophenols in water by palladium/iron. Water Research, 35, 1887-1890.

/50/ Kabir, A. & Marshall, W. D. (2001): Dechlorination of pentachlorophenol in supercritical carbon dioxide with a zero-valent silver–iron bimetallic mixture. Green Chemistry, 3, 47-51.

/51/ Morales, J., Hutcheson, R. & Cheng, I. F. (2002): Dechlorination of chlorinated phenols by catalyzed and uncatalyzed Fe(0) and Mg(0) particles. Journal of Hazardous Materials, 90, 97-108.

/52/ Wilkin, R. T & McNeal, M. S. 2003. Laboratory evaluation of zero valent iron to treat water impacted by acid mine drainage. Chemosphere, 53, 715-725.

/53/ Weisener, C., Sale, K.S., Smyth, D.J.A. & Blowes, D.W. (2005): Field column study using zerovalent iron for mercury removal from contaminated groundwater. Environmental Science & Technology, 39, 6306-6312.

/54/ Carvalho, F. D., Machado, I., Martínez, M. S., Soares, A. & Guilhermino, L. (2003): Use of atropine treated Daphnia magna survival for detection of environmental contamination by acetylcholinesterase inhibitors. Ecotoxicology and Environmental Safety, 54, 43-46.

/55/ ISO 6341 (1996): Water quality – Determination of the inhibition of the mobility of Daphnia magna Straus (Clado-cera, Crustacea) – Acute toxicity test. 3rd edition. International Organization for Standardization, Schweiz.

/56/ OECD (1996): Daphnia magna reproduction test. OECD Guidelines for Testing of Chemicals No. 202.

/57/ Shackelford, C., Sale, T. & Liberati, M (2005): In-Situ Remediation of Chlorinated Solvents using Zero Valent Iron and Clay Mixtures: A Case History, Geo-Frontiers.

/58/ CDM Federal Programs Corporation (2002): Final Remedial Action Report for LasagnaTM Phase IIb In-Situ Remediation of Solid Waste Management Unit 91 at the Paducah Gaseous Diffusion Plant, Paducah, Kentucky. U.S. Department of Energy.

/59/ Material Safety Data Sheet for parathion.

/60/ DHI Institut for Vand og Miljø (2005): Anaerob omdannelse af parathion i sediment fra Høfde 42. Ringkjøbing Amt.

/61/ Raun, K.D. & Tuxen, N. (2006): Installationer og prøvetagning umættet zone. Intern rapport under projektet RAP- Risikovurdering af Punktkilder. Institut for Miljø & Ressourcer, Danmarks Tekniske Universitet.

 



Version 1.0 Oktober 2007, © Miljøstyrelsen.