

Manual for program til risikovurdering – JAGG 2.0

Miljøprojekt nr. 1508, 2013

Titel:

Manual for program til risikovurdering – JAGG 2.0

Forfattere:

NIRAS A/S Falkenberg, J.A. Haudrup Milwertz, T. Nielsen, A. Wodschow, N. COWI A/S Andersen, L. Bote, T.V. Hug, V.

Udgiver:

Miljøstyrelsen Strandgade 29 1401 København K www.mst.dk

År:

2013

ISBN nr.

978-87-93026-55-1

Ansvarsfraskrivelse:

Miljøstyrelsen vil, når lejligheden gives, offentliggøre rapporter og indlæg vedrørende forsknings- og udviklingsprojekter inden for miljøsektoren, finansieret af Miljøstyrelsens undersøgelsesbevilling. Det skal bemærkes, at en sådan offentliggørelse ikke nødvendigvis betyder, at det pågældende indlæg giver udtryk for Miljøstyrelsens synspunkter. Offentliggørelsen betyder imidlertid, at Miljøstyrelsen finder, at indholdet udgør et væsentligt indlæg i debatten omkring den danske miljøpolitik.

Må citeres med kildeangivelse.

Indhold

For	ord	•••••		5
1.	Kon	cept fo	r JAGG 2.0	6
	1.1	Baggru	nd	6
	1.2	Bruger	ønsker til JAGG 2.0	6
	1.3	De vigti	igste ændringer	7
		1.3.1	Opdeling i enkeltstoffer og olie- og benzinblandinger	7
		1.3.2	Beregningsrutiner	8
		1.3.3	Indtastning og dokumentation	8
		1.3.4	Modulopbygningen	8
2.	Gen	erelle f	unktionaliteter i JAGG 2.0	11
	2.1	Naviger	ring i JAGG	11
	2.2	Indtast	ning af data	12
	2.3	Valglist	er	13
	5	2.3.1	Standardjordtyper eller egen liste	13
		<u>.</u> . 222	Standard stofliste og egen stofliste	16
	2.4	Bemærl	kningsfelter.	18
	-·+ 2.5	Sletning	g af data	10
3.	Hvo	ordan ko	ommer jeg i gang?	20
	3.1	Opstart		20
	3.2	Enkelts	toffer eller olie- og benzinblandinger	22
4.	Enk	eltstoff	er	23
	4.1	Fugacit	etsmodulet er indgangen til alle beregninger	23
		4.1.1	Jordtype	23
		4.1.2	Kemisk stof - anvendelse af standard eller egen liste	24
		4.1.3	Indtastning af målte data	25
		4.1.4	Teoretisk fasefordeling	25
		4.1.5	Beregnede koncentrationer fra målte data	26
		4.1.6	Navigation, print og nulstilling af værdier	27
	4.2	Vertika	l transport - Enkeltstoffer	29
		4.2.1	Kildeområdet	29
		4.2.2	Jordart	30
		4.2.3	Forureningsdata	30
		4.2.4	Den stationære porevandskoncentration	32
		4.2.5	De transiente porevandskoncentrationer	32
		4.2.6	Mættede forhold	34
		4.2.7	Navigation, print og nulstilling af værdier	35
	4.3	Grundv	and - Enkeltstoffer	37
		4.3.1	Valg af model for den kildenære opblandingsmodel	37
		4.3.2	Trin 1a	37
		4.3.3	Trin 1b	38
		4.3.4	Oplysninger om grundvandsmagasin	39
		4.3.5	Beregning trin 1a og trin 2a	40

		4.3.6	Beregning trin 1b og trin 2b	41
		4.3.7	Trin 3 med sorption og nedbrydning	41
		4.3.8	Navigation, print og nulstilling af værdier	43
	4.4	Indeklir	na - Enkeltstoffer	45
		4.4.1	Beregninger for bygninger med et betondæk	45
		4.4.2	Beregninger for bygninger med krybekælder	48
		4.4.3	Samlet for begge beregninger	50
		4.4.4	Navigation, print og nulstilling af værdier	51
	4.5	Udeluft	- Enkeltstoffer	55
		4.5.1	Indtastning af jordlag	55
		4.5.2	Indtastning af oplysninger om det forurenede område	56
		4.5.3	Forureningsdata	56
		4.5.4	Beregning af udeluftbidrag	57
		4.5.5	Baggrundskoncentration og test af andre værdier	57
		4.5.6	Navigation, print og nulstilling af værdier	57
-	Olia	stoffer		50
5.	5.1	Fugacite	etsmodulet - indgangen til alle beregninger med olie- og benzinblandinger	50
	J.1	5 1 1	Jordtype	
		5.1.2	Indtastning af kemiske data	60
		5.1.3	Beregnede koncentrationer for vand og poreluft	61
		5.1.4	Navigation, print og nulstilling af værdier	62
	5.2	Vertikal	transport - Oliestoffer	64
	0	5.2.1	Indtastning af jordtype og oplysning om det forurenede område	64
		5.2.2	Forureningsdata	64
		5.2.3	Navigation, nulstilling og print	67
	5.3	Grundva	and - Oliestoffer	70
	00	5.3.1	Indtastning af oplysninger om det forurenede område og	,
		00	grundvandsmagasin	70
		5.3.2	Forureningsdata	70
		5.3.3	Navigation, nulstilling og print	72
	5.4	Indeklir	na - Oliestoffer	75
		5.4.1	Beregninger for bygninger med et betondæk	75
		5.4.2	Beregninger for bygninger med krybekælder	77
		5.4.3	Samlet for begge beregninger	79
		5.4.4	Navigation, print og nulstilling af værdier	79
	5.5	Udeluft	- Oliestoffer	81
		5.5.1	Indtastning af jordtype og oplysninger om det forurenede område	81
		5.5.2	Forureningsdata	82
		5.5.3	Navigation, print og nulstilling af værdier	82
6	Duc	hlamlaa	ning	0 -
0.	rro	biennøs	1111g	05
Ref	eren	cer		86

Bilag 1: Eksempel på dataark (grundvand)

Forord

I 1999 udgav Miljøstyrelsen et regneark - JAGG 1.5 - til risikovurdering af forurenede lokaliteter. JAGG står for Jord, Afdampning, Gas og Grundvand. Regnearket var et hjælpeværktøj i forhold til Miljøstyrelsens vejledninger nr. 6 og 7 fra 1998 om oprydning på forurenede lokaliteter. JAGG 1.5 blev sidst opdateret i marts 2006, men i 2007-2008 iværksat Miljøstyrelsen "Projekt om opgradering af JAGG til version 2.0". En række forslag til forbedring af JAGG blev evalueret i miljøprojekt 1210 fra 2007 /1/ og mundede ud i tre miljøprojekter som omhandlede beregninger af indeklimabidrag, vertikal transport i den umættede zone og olieprofiler for oliekomponenter samt en udvidelse af stof- og parameterlister. Disse beregninger er indarbejdet i en ny version af JAGG -JAGG 2.0.

Denne brugermanual beskriver hvordan der udføres beregninger i JAGG 2.0, dvs. indtastning af data og udskrivning af resultaterne. Den teoretiske baggrund for beregninger findes i de respektive baggrundsrapporter og i Miljøstyrelsens vejledninger nr. 6 og 7 fra 1998 om oprydning på forurenede lokaliteter.

I JAGG 2.0 kan der - for de 192 enkeltstoffer i stofdatabasen - foretages beregninger af fugacitet og vertikal tranport i den umættede zone samt risikovurdering over for grundvand, udeluft og indeklimaet. Ligeledes kan der med grundlag i olieindhold i jordprøver foretage fugacitetsberegninger af stofsammensætning i porevand og poreluft. De teoretiske olieprofiler (stofsammensætninger) i porevand og poreluft kan overføres til tilsvarende beregnings moduler for grundvand, vertikal tranport i den umættede zone og risikovurdering over for grundvand, udeluft og indeklimaet.

På ATV vintermødet i marts 2009 blev der afholdt en workshop, hvor den indledende koncept for brugerflade for modulerne blev drøftet af fremtidige brugere og derefter implementeret i β -version af JAGG 2.0. I januar 2010 er der afholdt yderligere en workshop med deltagelse af udvalgte fremtidige brugere til afprøvning af en β -version af JAGG 2.0. I juni 2010 er der afholdt yderligere et ATV-møde med mulighed for afprøvning af en revideret β -version.

JAGG 2.0 er udarbejdet af COWI og NIRAS.

Ud over projektdeltagere har følgende personer har været inddraget i projektet:

Ole Kiilerich Arne Rokkjær Thomas H. Larsen Miljøstyrelsen Region Hovedstaden Orbicon (faglig sekretær for Miljøstyrelsen)

1. Koncept for JAGG 2.0

JAGG version 2.0 er på mange områder opbygget væsentligt anderledes end de tidligere versioner af JAGG. Ikke blot er brugergrænsefladen ændret, der er desuden indarbejdet en række nye funktionaliteter i regnearket, ligesom de beregninger, som ligger til grund for JAGG beregningerne, i visse tilfælde også er ændret.

Det ændrede design skyldes dels en række ønsker fra brugerne, dels et ønske fra udviklerne om en anden opbygning af regnearket end den tidligere JAGG.

1.1 Baggrund

Miljøstyrelsen afholdt i foråret 2006 en workshop med henblik på en forbedring af JAGG 1.5, hvor en række indsendte forslag blev drøftet. Forslagene er præsenteret i Miljørapport om "Opdatering af JAGG – Projektkatalog" /1/.

Miljøstyrelsen iværksatte derefter "Projekt om opgradering af JAGG til version 2.0", hvori der er udarbejdet tre nye beregningsmoduler, som skal indarbejdes i JAGG /2-4/. Videncenter for Jordforurening og GEO har sideløbende udviklet et regneark til risikovurdering af sprækker i moræneler /5/, som er videre udviklet af MST og DTU.

Følgende beregningsmoduler er implementeret i JAGG 2.0:

- Modul om indeklima, som erstatter det tidligere indeklimamodul i JAGG 1.5 /2/. Projektet er finansieret af Miljøstyrelsen og udført af COWI.
- Nyt modul om fugacitet og fasefordeling for blandingsprodukter med oliestoffer. I forbindelse med dette modul er tillige indsamlet data til en opdateret og udvidet stofdatabase /3/.
 Projektet er finansieret af Miljøstyrelsen og udført af DHI og COWI.
- Modul om vertikal transport i den umættede zone ned til førstkommende betydende magasin, som erstatter det tidligere umættet zone-modul i JAGG 1.5 /4/. Projektet er finansieret af Miljøstyrelsen og udført af NIRAS.

Herudover har GEO Videncenter for Jordforurening finansieret og publiceret et nyt værktøj til vurdering af vertikal transport i sprækker i moræneler ned til førstkommende betydende magasin /5/. Projektet er finansieret af Videncenter for Jordforurening og udarbejdet af GEO i tæt koordination med Miljøstyrelsens JAGG-projektdel udført af NIRAS.

1.2 Bruger ønsker til JAGG 2.0

I forbindelse med workshoppen i 2006 blev der drøftet en række forslag til, hvorledes brugerfladen i JAGG kunne forbedres /1/. Forslagene omfattede:

- at layoutet blev gjort mere overskueligt og printervenligt, således at det er lettere at udskrive beregningerne
- at det er muligt at dokumentere, hvem der har udført beregningerne og hvornår

- at det er muligt at dokumentere, hvilke inputdata, der er anvendt, og at det er muligt at give begrundelser herfor
- at det tydeligt fremgår, hvilke parametre, der er beregnet, hvilke parametre, der er indtastet, og hvilke parametre, der er standardparametre
- at det fremgår, hvilke minimumskrav, der er til inputdata
- at det tydeligt fremgår, hvis der er ændret på bagvedliggende formler

Samlet kan forslagene sammenfattes til et ønske om et layout, som er mere overskueligt og udskriftsegnet, og som i højere grad kan dokumentere, hvorledes beregningerne er foretaget, f.eks. hvilke inputparametre, der er anvendt, hvem der har udført beregningerne, og hvornår de er gennemført.

1.3 De vigtigste ændringer

Dette afsnit er en overordnet gennemgang af de vækstligste ændringer i JAGG. Detailbeskrivelser af ændringerne vil fremgå af gennemgangen af de enkelte skærmbilleder.

1.3.1 Opdeling i enkeltstoffer og olie- og benzinblandinger

JAGG version 2.0 er opdelt i to af hinanden uafhængige hovedmoduler. Et hovedmodul, der kan anvendes ved beregninger af enkeltstoffer i lighed med de tidligere udgaver af JAGG, og et modul til beregning af olie- og benzinblandinger, hvor oliestoffer opdeles i en række repræsentative fraktioner. Inden for hvert af hovedmodulerne er der mulighed for at foretage beregninger af fugacitet, vertikal transport, grundvand, udeluft og indeklima, idet hvert af disse områder har egne fagmoduler, som det er forsøgt illustreret i figur 1.1.

ILLUSTRATION AF DEN OVERORDNEDE MODULOPBYGNING AF JAGG 2.0

1.3.2 Beregningsrutiner

For nogle af fagmodulerne er de beregningsrutiner, som ligger til grund for modulerne, de samme som er anvendt i tidligere versioner af JAGG. Dette gælder for følgende fagmoduler:

- **Fugacitet** (enkeltstoffer)
- Udeluft
- Grundvand

For fagmodulet **Indeklima** er beregningsrutinerne ændret i forhold til tidligere versioner, således at der er mulighed for at medtage andre gulvtyper end armeret betongulv.

Fagmodulet **Vertikal transport** er et helt nyt modul, som omhandler vertikal transport ned til førstkommende betydende magasin i enten den umættede eller mættede homogene jord.

Fagmodulet Fugacitet for beregninger på olie- og benzinblandinger er ligeledes et helt nyt modul.

1.3.3 Indtastning og dokumentation

De tidligere udgaver af JAGG indeholdt ikke en egentlig dokumentationsfunktionalitet, hvorfor dokumentationen ofte bestod i screendumps af de forskellige indtastningsformularer.

I JAGG version 2.0 er der separate indtastnings- og dokumentationsark. Indtastningsarkene er udelukkende rettet mod de behov, som en bruger har i forbindelse med indtastning og gennemførelse af beregningerne, medens dokumentationsarkene er rettet mod at dokumentere de beregninger, som er gennemført som f.eks. bilag til rapporter, ansøgninger eller sagsark.

Et andet kardinalpunkt i JAGG 2.0 er, at det skal være muligt at kunne skelne mellem værdier indtastet af brugeren og værdier, som i JAGG er foreslået som standardværdier eller beregnede værdier. Det skal være muligt at se både standard/beregnede værdier og værdier indtastet af brugeren samtidigt, således at det er mulig at sammenligne værdierne. Dette betyder, at der både i indtastnings- og dokumentationsarkene i JAGG 2.0 er væsentlig flere datafelter end i de tidligere udgaver af JAGG, hvilket gør, at indtastningsarkene i JAGG 2.0 er markant anderledes.

I tidligere versioner af JAGG bestod indtastningen af en række indtastningsformularer. Disse er nu samlet i et enkelt indtastningsark for hvert fagmodul, hvilket medvirker til at give et bedre overblik over beregningerne.

1.3.4 Modulopbygningen

De tidligere versioner af JAGG bestod af en række fagmoduler, som hver har en serie af indtastningsark, mens beregningerne for alle fagmodulerne blev foretaget i et og samme beregningsark (se figur 1.2).

I JAGG 2.0 er den overordnede opbygning anderledes. Som nævnt først i dette afsnit, er JAGG 2.0 opdelt i to hovedmoduler, **Enkeltstoffer** og **Olie & benzin**, Hovedmodulerne er opbygget ens, idet de er opdelt i fem fagmoduler: fugacitet, udeluft, indeklima, vertikal transport og grundvand som vist i figur 1.4.

Hvert fagmodulerne er opdelt i et indtastningsark, et dokumentationsark, et selvstændigt beregningsark og et dataark, som vist i figur 1.3.

Det centrale ark for brugeren er indtastningsarket, som er det ark hvor man indtaster inputdata og ser resultatet af beregningerne. I JAGG 2.0 foregår indtastning af data og visning af beregningsresultater i samme ark. Hvert modul indeholder desuden et dokumentationsark, hvor opsætningen af data er tilpasset udskrift på A4 papir.

Dataarket er det centrale ark i selve datahåndteringen. Dette ark holder styr på alle inputdata og resultater, såvel mellemberegninger som slutberegninger. Udveksling af data mellem de enkelte fagmoduler ske også via dataarket, som vist i figur 1.4. Dataarket er tilgængeligt for brugeren, men der vil ikke umiddelbart kunne foretages ændringer i dette lag.

For hvert fagmodul er der et selvstændigt beregningslag. Arket kan tilgås af brugeren, men en redigeringer i arket og i beregningsformlerne er ikke umiddelbart tilgængelig for brugeren.

2. Generelle funktionaliteter i JAGG 2.0

2.1 Navigering i JAGG

Som det fremgår af kapitel 1.3.4 er JAGG 2.0 opbygget af en række indtastnings- og beregningsark. I lighed med de foregående versioner af JAGG er brugerfladen tænkt, så det udelukkende er de ark, som anvendes af brugeren, der er synlige, mens de øvrige ark ligger gemt.

For at styre om arkene er synlige eller skjulte, foregår navigeringen mellem arkene ved hjælp af knapper. I alle indtastningsark er der i øverste højre del af skærmbilledet en række knapper til navigering. Knapperne er opdelt i tre kategorier som vist i figur 2.1:

- Yderst til højre er knapper til navigering mellem de forskellige fagmoduler.
- I midten er knapper til navigering inden for det pågældende modul, dvs. til data- og beregningsark, til udskrifts ark og til vejledningen.
- Til venstre er knapperne til navigering til hovedmodulerne dvs. opstartsmodulet og fugacitetsmodulerne for **Enkeltstoffer** eller **Olie & benzin**.

Kemiske data og fu Lokaliteten	Kemiske data og fugacitet for enkeltstoffer okaliteten nelifietenam						Opstart Dataark Grundvand		Grundvand				
Lokalitetsnavn:				Re	nseri			Olie &	benzin	Udskrift	Indeklima		
Adresse:	3	tationsvej			Postnr./By:	34	150	Nulsti	værdier	Veiledning	Udeluft		
Lokalitetsnummer:	2	553-56			Projektnr:	14.2	33.00						
Beregning udføres for :	Γ										Wertikal transport	Γ	
Jordtype	Va	lg jordart f	for fugacite Poreluft-	tsberegnin Vand-	g eller indtas Samlet	t egne jorda Volumen af	artsdata Korn- rumvægt	Bulk- masse- fylde	% Indhold organisk	B. mærkning			Navigering til fagmoduler
Jordtype Egen liste	Jordty;	e 	Volumen VL	indhold Vv	s=VL+Vv	jordskellet	(kg/l) d	(kg/l) ρ Ο	f _{oc}				Navigering inden for fagmodulet
Kemiske data	N	ælg stof fo	or fugacitet	sberegning	j eller indtast	egne stofs	pecifikke da	ta		Bemærkning	3	1	
Stofnavn		Stof 1	Egen liste	Stof 2	Egen liste	Stof 3	Egen liste	Stof 4	Egen liste	Skjul detailoplysr	ninger		Navigering mellem hovedmodulerne (opstart, enkeltstoffer, olie & benzin)
FIGUR 2 1													

EKSEMPEL PÅ PLACERING AF NAVIGERINGSKNAPPER

Navigering ved hjælp af knapperne vil sikre, at det kun er de ark, som brugeren ønsker at arbejde, med som er åbne. Når man navigerer inden for det samme modul forbliver indtastningsarket åbent. Hvis man navigerer til andre moduler lukkes automatisk alle åbne ark fra det modul man navigerer væk fra. Det kan derfor ikke anbefales, at brugeren navigerer mellem arkene på anden vis end ved at anvende knapperne.

2.2 Indtastning af data

Indtastnings arkene indeholder tre typer af celler, hvide, lysegrå og mørkere grå.

• De lysegrå felter er felter som tilknyttet en valgliste (se næste kapitel) og som udfyldes automatisk når der vælges en værdi i valglisten, F.eks. molmasse og CAS-nummer for benzen.

Stofnavn		Benzen
CAS-nummer		CAS 71-43-2
Molmasse	m	78,1

De lyse grå felter udfyldes med standardværdier, som er godkendte af Miljøstyrelsen, og publiceret i vejledninger og arbejdsrapporter som er tilknyttet JAGG.

• De mørkere grå felter, er systemberegnede værdier. Det vil sige resultater eller mellemresultater, af de beregninger som gennemføres i JAGG

Stofnavn	Benzen
M _{L, max}	119.525
M _{V, max}	268.500
M _{J, max}	309.479
Mættede damptryk, C _{L,max}	398.415
Maksimal fordeling, luft f _l	0,171
Maksimal fordeling, vand f.,	0,385
Maksimal fordeling, jord f ₁	0,444

• De hvide felter er indtastningsfelter, hvor brugeren kan indtaste målte eller estimerede værdier i stedet for standard værdierne eller de beregnede værdier. Såfremt der både findes en værdi et gråt felt og et tilhørende hvidt felt foretages de videre beregninger med værdien i det hvide felt.

Målt konc. i poreluft	CL	5000
Beregnet jordkoncentration	Ct	6,005815434
Beregnet vandskoncentration	Cv	22,46399161

I udskriftarkene markeres de af brugeren indtastede værdier med **Fed** skrifttype, mens standard værdier og beregnede værdier angives med normal skrifttype.

Jord				
Kommentar	v	Standard data	Indtastede data	a (angives med fed)
Jordtype		S	and	
Poreluftvolumen	VL	0,3		
Vandindhold	Vv	0,15		
Samlet porøsitet	≈VL+VV	0,45		
Volumen af jordskellet	VJ	0,55		
Kornrumvægt	d	2,65		kg/l
Volumenvægt	ρ	1,4575		kg/l
Indhold af organisk kulstof	f _{oo}	0,1	0,5	%

2.3 Valglister

I JAGG 2.0 findes to typer af valglister.

Den ene type indeholder valglister med de af Miljøstyrelsen godkendte listeværdier. Disse valglister er låst, og brugeren må ikke ændre eller tilføje data til disse valglister.

Den anden type valglister er bruger definerede valglister, hvor brugeren har mulighed for at tilføje, ændre og slette i valglistens indhold

I det følgende gives eksempler for de to hyppigst forekommende valglister.

2.3.1 Standardjordtyper eller egen liste

I mange af modulerne skal man indtaste en jordtype. Jordtyperne ligger som valglister og man kan enten vælge en standardjordtype fra listen eller oprette eller hente egenskaber fra egen liste.

Standardjordtyper:

Klikker man på knappen [Jordtype] kommer følgende indtastningsboks frem, med en liste over standardjordtyperne.

Valgliste									23
Jordtype	Poreluftvolun Interval Ubefa areal	estet Under bygning	Vandindl Interval U a	nold befæstet real	Under bygning	— Kornrun Interval	nv (kg/l) — Værdi	— % organ Interval	isk C Værdi
Ler Sand Lermuld	0,00 - 0,25 0. 0,0 - 0,45 0. 0,0 - 0,2 0.	1 0.25 3 0.4 1 0.2	0,20 - 0,40 0,05 - 0,35 0,25 - 0,35	0.3 0.15 0.3	0.2 0.05 0.25	2,7 - 2,8 2,6 - 2,7 2,6 - 2,7	2.7 2.65 2.65		0.1 0.1 1
Sandmuld Grus Fyld	0,05 - 0,30 0. 0,0 - 0,35 0. 0,0 - 0,35 0.	1 0.3 2 0.3 1 0.3	0,15 - 0,35 0,05 - 0,25 0,15 - 0,40	0.35 0.15 0.3	0.15 0.05 0.15	2,5 - 2,6 2,6 - 2,7 2,5 - 2,7	2.6 2.65 2.6		2 0.1
S <u>e</u>	29: sandm			ulstil sys	temværdie	٢	<u>O</u> k	E	ortryd

- Man kan søge i listen ved at indtaste de første bogstaver i den ønskede jordart i søgefeltet, f.eks. "s" for sand. I modsætning til de tidligere udgaver af JAGG er det muligt at præcisere søgningen ved at fortsætte med at skrive navnet på den ønskede jordtype indtil resultat kommer frem f.eks. "sandm" for sandmuld.
- Data overføres til indtastningsarket <u>lysegrå</u> felter ved med musen at dobbeltklikke på det ønskede resultat, eller ved at klikke [OK].
- Hvis der klikkes [Fortryd], lukkes indtastningsboksen uden at der overføres data til indtastningsarket.
- Ved at sætte fluebenklikke i feltet **Nulstil systemværdier** og herefter klikke [**OK**] fjernes de data som tidligere er overført til indtastningsarket. Det er således muligt at nulstille enkeltrækker i indtastningsarkene uden at skulle nulstille hele arket.

Jordtype	Vælg jorda	Vælg jordart for fugacitetsberegning eller indtast egne jordartsdata									
	Jordtype	Poreluft- volumen	Vand- indhold	Samlet porøsitet	Volumen af jordskellet	Korn- rumvægt (kg/l)	masse- fylde (kg/l)	% Indhold organisk kulstof			
		V _L	Vv	ε=V⊾+V _V	V,	d	ρ	f _{ee}			
Jordtype Egen liste	Sandmuld	0,05 - 0,30 0,1	0,15 - 0,35 0,35	0,45	0,55	2,5 - 2,6 2,6	1,43	2			
S <u>øg</u> :		4	Nulstil sys	stemværdi	er	<u>O</u> k	<u>F</u> or	rtryd			

Jordtype	Vælg jordar	t for fugacite	tsberegning	eller indtast	t egne jordar	tsdata		
	Jordtype	Poreluft- volumen VL	Vand- indhold V _v	Samlet porøsitet ≈=V⊾+V _V	Volumen af jordskellet V _J	Korn- rumvægt (kg/l) d	Bulk- masse- fylde (kg/l) P	% Indhold organisk kulstof f _{oc}
Jordtype Egen liste				0	1		0	

Egen liste

Klikker man på knappen [Egen liste] kommer følgende indtastningsboks frem, med en liste over de jordtyper som brugeren selv har oprettet.

	Egen list	e								23
	Jordty	pe	Poreluftvo Ubefæstet areal	lumen Under bygning	Vandindh Ubefæstet areal	old Under bygning	Kornrum	- Organisk C %	Indsat af (initialer)	Dato
	Eksemp	el-grus	0.3		0.05		2.65	0.01	jaf	23-04-2010
•										
	•									•
		<u>T</u> ilføj	jordtype	Søg:			🗆 Nulst	il indtastede væ	rdier	
		Fjern	jordtype	Æn	d <u>r</u> jordtype				<u>O</u> k	<u>F</u> ortryd

- Det er muligt at søge i egen liste over jordtyper på samme måde som i standardlisten.
- Data overføres til indtastningsarket <u>hvide</u> felter ved med musen at dobbeltklikke på det ønskede resultat, eller ved at klikke [OK].

Jordtype	Vælg jordart for fugacitetsberegning eller indtast egne jordartsdata								
	Jordtype	Poreluft- volumen VL	Vand- indhold V _v	Samlet porøsitet ≈=V⊾+V _v	Volumen af jordskellet V _J	Korn- rumvægt (kg/l)	Bulk- masse- fylde (kg/l)	% Indhold organisk kulstof f	
Jordtype Egen liste	Eksempel-grus	0,3	0,05	0,35	0,65	2,65	1,7225	0,01	

Der kan oprettes nye jordtyper i egen liste ved at klikke på [Tilføj jordtype], hvorefter følgende indtastningsformular kommer frem.

Tilføj ny Jordtype
Indsat af (Initialer):
Dato: 02-09-2013
Jordtype:
Poreluftvolumen Ubefæstet areal: Under
Vandindhold Ubefæstet areal: Under bygning:
Værdi:
Indhold af organisk C (% vægtbasis)
QK Exit

Når de ønskede data er indtastet klikkes [OK] og der vil være oprettet en ny række i *Egen liste*. Hvis der i stedet klikkes [Exit] lukkes indtastningsformularen uden at der overføres data til *Egen Liste*.

Hvis man i *Egen liste* vælger en jordtype og klikker [Ændr jordtype] så åbnes indtastningsformularen med værdierne for den pågældende jordtype. Det er nu muligt at rette, tilføje og slette værdier.

Det er ligeledes muligt at slette en jordtyper *Egen liste* ved at vælge jordtypen og klikke [Fjern jordtype].

Bemærk!

Hvis man i indtastningsboksen *Egen liste* klikker på [Fortryd], lukkes indtastningsboksen uden at der overføres data til indtastningsarket. Knappen [Fortryd] har <u>ingen</u> indflydelse på eventuelle ændringer man har foretaget til listen inden man klikkede på fortryd knappen.

2.3.2 Standard stofliste og egen stofliste

Stoflisten er en anden af de lister som bruger af JAGG 2.0 hyppigt vil anvende. Listen adskiller sig desuden ved at have mange flere poster end de øvrige lister.

Standard stofliste

Standard stofdatabasen anvendes kun i modulet Enkeltstoffer. Listen kaldes frem ved at klikke på en af knapperne [Stof x].

Valgliste					×
Forureningskomponent	Gruppe	CAS-nummer	Grundv.kvalit. kriterie (µg/l)	Afdamp. kriterie (mg/m3)	Jordkval. kriterie (mg/kg)
Amitrol	Pesticider				
AMPA	Pesticider				_
anilin	Aliphatiske kulbr: NSO-forl	bind CAS 62-53-3			
Anthracen	PAH	CAS 120-12-7			
Atrazin	Pesticider				
Atrazin, deethyl	Pesticider				
Atrazin, desisopropyl	Pesticider	CAS 330-54-1			
Atrazin, hydroxy	Pesticider				
BAM	Pesticider				
Bentazon	Pesticider				
Benzen	Monoaromat. Kulbr.	CAS 71-43-2		0.00013	1.5 💌
•					•
Sorter e. stofn <u>a</u> vn	S <u>øg</u> : benz		lstil systemværdier	<u>O</u> k	<u>F</u> ortryd
Sor <u>t</u> er e. gruppe					

Funktionaliteten i listen er den samme som for listen "Standard jordtype" dog med følgende tilføjelser:

- Ved at klikke på "Sorter e. stofnavn" sorteres stofferne i alfabetisk orden.
- Ved at klikke på "Sorter e. gruppe" sorteres stofferne i henhold til en kemisk gruppe, f.eks. monoaromatiske kulbrinter.

[Valgliste						X
	Forureningskomponent	Gruppe	CAS-nummer	Grundv.kvalit. kriterie (µg/l)	Afdamp. kriterie (mg/m3)	Jordkval. kr (mg/kg)	riterie
11	cis-1,2-Dichlorethylen	Klorerede alifater	CAS 156-59-2	1	0.4	85	•
H	Dichlormethan	Klorerede alifater	CAS 75-09-2	1	0.0006	8	
	Tetrachlorethylen	Klorerede alifater	CAS 127-18-4	1	0.006	5	
	Tetrachlormethan	Klorerede alifater	CAS 56-23-5	1	0.005	5	_
ш	trans-1,2-Dichlorethylen	Klorerede alifater	CAS 156-60-5	1	0.4	85	
	Trichlorethylen	Klorerede alifater	CAS 79-01-6	1	0.001	5	
	Trichlormethan (Chloroform)	Klorerede alifater	CAS 67-66-3	1	0.02	50	
Ш	Vinylchlorid	Klorerede alifater	CAS 75-01-4	0.2	0.00004	0.4	
	1,2,3-Trimethylbenzen	Monoaromat. Kulbr	CAS 526-73-8	1	0.03		
	1,2,4-Trimethylbenzen	Monoaromat. Kulbr	CAS 95-63-6	1	0.03		
	1,3,5-Trimethylbenzen	Monoaromat, Kulbr	CAS 108-67-8	1	0.03		-
	•						•
	Sorter e. stofn <u>a</u> vn Sor <u>t</u> er e. gruppe	Søg:	□ N.	ılstil systemværdier	Qk	<u>F</u> ortryd	

Egen stofliste

E	gen liste							×
	Forureningskomponent	Gruppe	CAS-nummer	Grundv.kvalit. kriterie (µg/l)	Afdamp. kriterie (mg/m3)	Jordkval. kriterie (mg/kg)	Indsat af (initialer):	Dato:
	Eksempel-n-butylacetat	oples. midl.	123-86-4	10	0.1		jaf	11/7/2012
	Sorter e. stofn <u>a</u> vn Sor <u>t</u> er e. gruppe	Tilføj ny <u>t</u> stof Fjern eget sto <u>f</u>	Søg: Ændr <u>e</u> get stof	□ Nul	stil indtastede værdi	er	Qk	Eortryd

Listen *Egen stofliste* har samme funktionaliteter som listen *Egen jordtype*. Det er desuden muligt at tilføje, redigere og slette poster i listen.

Det er ikke nødvendigt at udfylde alle felter for et stof. For at beregningerne kan gennemføres i JAGG skal visse værdier dog være indtastet afhængigt af hvilke beregninger, der skal gennemføres. Værdierne kan enten indtastes i *Egen stofliste* eller manuelt i de hvide felter i indtastningsarket.

Tilføj nyt stof	×			
Stamdata Indsat af (Initialer):	Kvalitetskriterier Grundvands- kvalitetskrit. (µg/I):		Stof 1	E gen liste
Stofnavn: XX CASnummer:	Afdampningskrit. (mg/m3): Jordkvalitetskrit. (mg/kg ts):	Stofnavn	×	x
Gruppe:	Nedbrydningskonstanter (dag-1)	CAS-nummer		
Kemiske parametre Molvægt:	1. ordens grundvand anaerobe forhold:	Molmasse m Damotryk p		
Damptryk (Pa):	1. ordens grundvand aerobe forhold:	Vandopløselighed S		
Vandopløselighed (mg/l):	1. ordens umættet zone	Log oktanol/vand ford. koeff. log Kow		
koefficient:	anaerobe forhold: 1. ordens	Koc K _{oc} Grundvandskvalitetskriterie, GV		
Henrys konstant:	aerobe forhold:	Afdampningskriterie, luft Jordkvalitetskriterie		
Diffusions koefficient i luft	aerobe forhold:	Afskæringskriterie Diffusions koefficient i luft D _L		
Contractors Contra	QK Exit	Diffusions koefficient i vand D _W Vindhastighed		
Vindhastighed (m/s):				_

2.4 Bemærkningsfelter

Hvert indtastningsark er opdelt i områder. For eksempel er indtastningsarket "Enkeltstoffer" inddelt i tre "Jordtype", "Kemiske data" og "Fugacitet". Til hvert område er knyttet en knap [Bemærkning], som anvendes hvis man vil tilføje bemærkninger til de benyttede data.

Hvis der ikke er tilknyttet bemærkninger er knappen mørkeblå, og hvis der er tilknyttet bemærkninger er knappen lyseblå.

Når der klikkes på knappen [Bemærkning] åbnes en indtastningsboks.

Ændr bemærkning	
Bemærkning	×
Indtast bemærkning:	
Det er ikke muligt at skrive med Fed tekst eller kursi	v.
	QK <u>F</u> ortryd <u>S</u> let tekst

I bemærkningsfeltet kan der indtastes op til 500 tegn. Det er ikke muligt at formatere teksten. Hvis der klikkes [OK] gemmes teksten og indtastningsboksen lukkes. Hvis der klikkes [Fortryd] lukkes indtastningsboksen uden af de indtastede bemærkninger gemmes. Hvis der klikkes [slet tekst] nulstilles indtastningsboksen. Der skal herefter klikkes [OK] for at teksten gemmes eller [Fortryd] for at teksten er slettet.

2.5 Sletning af data

På alle indtastningsark er der i toppen af ark en rød knap [Nulstil værdier] Formålet med knappen er at nulstille indtastningsarket, hvilket betyder at alle indtastede data i arket slettes. Hvis man klikker på [Nulstil værdier] kommer derfor en Advarsel:

Hvis man klikker [Yes] starter makroen med at slette alle data i arket, og hvis man klikker [No] startes makroen ikke.

Data kan også slettes manuelt. Er data indlæst fra en valgliste åbnes valglisten, der sættes flueben i feltet **Nulstil systemværdier** og herefter klikke [OK] som beskrevet i afsnit 2.3.

I de hvide felter kan data slettes manuelt.

Tekst i bemærkningsfelter slettes ved at åbne bemærkningsfeltet, klikke på knappen [Slet tekst] og herefter klikke på [OK].

3. Hvordan kommer jeg i gang?

3.1 Opstart

For alle beregninger gælder, at man skal begynde i arket **Opstart.**

Her indtastes lokalitetsdata m.v. for ejendommen. Endvidere kan det angives, hvem der har lavet JAGG-beregningen

Herefter benyttes knapperne i øverste højre hjørne til at betjene programmet.

Ved at benytte knapperne [Enkeltstoffer] eller [Olie & Benzin] vælges det, om der skal laves en risikovurdering for enkeltstoffer eller en olie- og benzinblanding (se afsnit 3.2)

Ved at klikke på [Vejledning] hentes en kort vejledning i, hvordan data indtastes.

Ved at klikke på [Dataark] vises en oversigt over de indtastede data.

Knappen [Nulstil værdier] sletter <u>alle</u> indtastede værdier på <u>alle</u> ark i regnearket.

Knappen [Reset Knapformat]. I visse tilfælde kan man risikerer at knapperne i regnearket ændrer plads og eller størrelse. Knappen hjælper med at genoprette det oprindelige skærmdesign.

3.2 Enkeltstoffer eller olie- og benzinblandinger

Efter indtastning af lokalitetsdata mv. skal man vælge, om man vil udføre risikovurderinger for op til fire enkeltstoffer ved at klikke på knappen[**Enkeltstoffer**] (beregningerne er beskrevet i kap. 4) eller for olie- og benzinblandinger ved at klikke på knappen [**Olie & benzin**] (beregningerne er beskrevet i kap. 5).

4. Enkeltstoffer

4.1 Fugacitetsmodulet er indgangen til alle beregninger

Når man på opstartsiden vælger modulet "Enkeltstoffer", åbnes et nyt ark.

Kemiske data og fugacitet for enkeltstoffer					Opstart	Dataark	Grundvand
Lokalitetsnavn:	Renseri			— Oli	e & benzin	Udskrift	Indeklima
Adresse:	Stationsvej 2	Postnr./By:	3450	Nuls	til værdier	Vejledning	Udeluft
Lokalitetsnummer: Beregning udføres for :	255-2651	Projektnr:	14.233.00				Vertikal transport
Jordtype Jord Jordtype	type Valumen	Vand- indhold Samlet Vv æVs+Vv 0	volumen af rumwæg jordskellet V, d V, d	Bulk mass fylde (kg/ P	e- % Indho e organis) kulstof f _{oc}	d k	
Kemiske data	Vælg stof for fugacitet	sberegning eller indtas	t egne stofspecifikke	data		Bemærknin	9
Stofnavn	Stof 1 Egen liste	Stof 2 Egen liste	Stof 3 Egen list	Stof	4 Egen list	e Vis detailoplysni	nger

Alle beregninger indledes med, at man indtaster data i fugacitetsmodulet.

Under enkeltstoffer kan der indtastes data for op til fire målinger, som skal risikovurderes. Disse kan være data for fire forskellige stoffer eller for forskellige målte koncentrationer af samme stof i forskellige målepunkter.

Såfremt der indtastes data om jordarten, hvorfra prøverne er udtaget, beregnes fasefordelingen i de andre medier (fugacitetsberegninger) i henhold til de målte data.

Ved efterfølgende beregninger for risikovurdering af udeluft, indeklima, vertikal transport eller grundvand overføres enten de målte eller de beregnede koncentrationer for de relevante medier. Er der indtastet målte værdier, anvendes disse.

4.1.1 Jordtype

Data om jordtyper kan vælges fra en liste over standardjordtyper, fra en egen liste eller indtastes manuelt i de hvide felter. I kapitlet 2.3 er beskrevet hvordan data fra valglister fremsøges og hentes. Man kan kombinere indlæsning fra valglister og manuel indtastning. Hvis man f.eks. ønsker, at beregningerne skal gennemføres med en anden værdi, end den der fremgår af valglisten, kan dette gøres ved at indtaste værdien i det hvide felt ud for den pågældende oplysning. Hvis et hvidt felt er udfyldt, vil beregningerne altid blive gennemført med denne værdi. I det viste eksempel (se afsnit 4.1.2) gennemføres beregningerne med et organisk indhold på 0,5 og ikke 0,1 som er standardværdien for sandjord.

Såfremt man indtaster en egenværdi i stedet for en standardværdi, bør man i bemærkningsfeltet (klik på den blå knap) anføre, hvorfor man ændrer i beregningsforudsætningerne.

Jordtypen anvendes kun til at beregne fugacitet, f.eks. porevands- eller poreluftkoncentration fra en forurenings koncentration i en jordprøve. Beregning af transport igennem jordlag til udeluft, indeklima eller grundvand er baseret på de aktuelle jordlag eller aquifermateriale, som vælges i de pågældende moduler.

4.1.2 Kemisk stof - anvendelse af standard eller egen liste

Man kan vælge op til fire stoffer fra standardlisten eller oprette eller hente stofegenskaber fra egen liste.

Der kan indtastes bemærkninger vedrørende stoffer m.v. ved at klikke på bemærkningsfeltet.

Ligeledes kan man klikke på [Vis detailoplysninger] og se de anvendte fysisk-kemiske egenskaber, eller vælge [Skjul detailoplysninger] for at skjule disse.

Kemiske data og fug	acitet for enkel	Opstart	Dataark	Grundvand		
Lokalitetenaur:	Denseri		Olie & benzin	Uds k rift	Indeklima	
Adrosso:	Stationsvei 2	Postor /Bu:	2autor JR. 12450		Voiledaina	Udolut
Lokalitetspummer:	255-2651	Projektor:	14 233 00	Nuisui værdier	vejredning	Udeiun
Bereaning udføres for :	Benzen	Trichlorethylen	Trichlorethylen	Eksempel-n-	-	Vertikal trans port
	for the for each of the second			Literation		
Jordtype	/ælg jordart for fugacit	etsberegning eller ind	itast egne jordartsdat	a Bulk-	Ændrbemærkn	ing
Jord	Poreluít- type volumen V _L 0.0 - 0.45	Vand- Samlet indhold porøsitet Vy s=VL+Vy 0,05 - 0,35	Volumen Korn- af rumvægt jordskellet (kg/l) Vj d 2,6 - 2,7	masse- % Indholo fylde organisk (kg/l) kulstof p f _{ec}	-	
Egen liste	0,3	0,15 0,45	0,55 2,65	1,4575	-	
P					_	
Kemiske data	Vælg stof for fugacite	etsberegning eller indt	ast egne stofspecifikk	te data	Ændrbemærkr	ning
	Stof1 Egen lis te	Stof2 Egen lis te	Stof3 Egen lis te	Stof 4 Egen liste	Skjul detailoplysr	linger
Stofnavn	Benzen	Trichlorethylen	Trichlorethylen			
				Eksempel-n-		
				butylacetat	<u> </u>	
CAS-nummer	CAS 71-43-2	CAS 79-01-6	CAS 79-01-6	123-86-4		
Molmasse m	78,1	131,39	131,39	116,2		
Damptryk p	12639	9199,24	9199,24	1995	- Pa	
Vandopløselighed S	1790	1280	1280	5000	- mg/l	
Henry's konstant K _H	0,22258	0,38113	0,38113	0,187		
Log oktanol/vand ford, koeflog $K_{\rm ow}$	2,13	2,42	2,42	1,81		
Koc K _{oc}	23,7247	47,5116	47,5116	11,03	-	
Grundvandskvalitetskriterie, GV	1	1	1	10	μg/l	
Afdampningskriterie, luft	0,00013	0,001	0,001	0,1	mg/m ³	
Jordkvalitetskriterie					mg/kg TS	
Afskæringskriterie					mg/kg TS	
Diffusions koefficient i luft D _L	9,3E-06	7,2E-06	7,2E-06	6,50E-06	m²ls	
Diffusions koefficient i vand D _W	9,3E-10	7,2E-10	7,2E-10	6,50E-10	m²/s	
Vindhastighed	1	1	1	0,1	mis	
1. ordens nedbrydn. grundvand anaerobe forhold	0,001 0	0,0001 0	0,0001	0	dagi	
1. ordens nedbrydn, grundvand aerobe forhold	0,01	0	0	0,01	dagi	
1. ordens nedbrydn, umættet zone anaerobe forhold	0	0	0	0	dagi	
1. ordens nedbrydn, umættet zone aerobe forhold	0	0	0	0,01	dagi	
1. ordens nedbrydn, poreluft aerobe forhold	0	0	0	0,01	dagi	

Når detailoplysningerne vises, kan der indtastes alternative værdier i de hvide felter, som vil blive anvendt i beregningerne i de efterfølgende moduler I eksemplet ovenfor er ; 1.ordens nedbrydningskonstanter i grundvand under anaerobe forhold sat til o. Værdien indgår ikke i fugacitetsberegningerne men anvendes i grundvandsmodulets trin 3. Bemærk at for visse parametre vil indtastning af egne værdier ikke ændre resultatet, f.eks. anvendes K_{oc} og Henrys konstant kun i **Vertikal transport**, mens der i **Grundvand** anvendes log K_{ow} og ikke K_{oc}.

4.1.3 Indtastning af målte data

Der kan indtastes målepunkter (prøve-ID), dato og målte koncentrationer i enten jord, vand eller poreluft, eller alle tre medier. Såfremt der kun skal beregnes risiko for ét stof, kan samme stof vælges i alle fire kolonner med angivelse af forskellige koncentrationer og målepunkter. I bemærkningsfeltet kan der ligeledes indtastes bemærkninger f.eks. vedrørende målepunkter eller koncentrationer.

Fugacitet For hvert stof indtast målepunkt og evt prøvetagningsdato samt den målte værdi						
Målepunkt Dato		JP-01 1,0 19-01-2012	JP-05 6,5 28-01-2012	PL-1 10-05-2012	VP-2 28-01-2012	
Målt koncentration i poreluft	C_L			0,5		mg/m³
Beregnet jordkoncentration	Ct	0	0	0,000549575	0	mg/kg TS
Beregnet vandskoncentration	C_V	0	0	0,001311873	0	mg/l
Målt konc. i grundvand	Cv				1,2	mg/l
Beregnet poreluftskonc.	CL	0	0	0	22,456082	mg/m ^s
Beregnet jordkonc.	Ct	0	0	0	0,19430132	mg/kg TS
Målt koncentration i jorden	Ct	0,5	560			mg/kg TS
Beregnet poreluftskonc.	CL	416,2632081	487852,0556	0	0	mg/m ^s
Beregnet vandskoncentration	Cv	1,870186643	1280	0	0	mg/l
Fri fase? Anvendt Brugerdata		nej Ja. se bemærkning	Mulighed for fri fase Ja. se bemærkning	nej Ja, se bemærkning	nej Ja. se bernærkning	

Her vises et eksempel, hvor der er indtastet jordkoncentrationer for målepunkt JP-01 i 1 m´s dybde på 0,5 mg benzen/kg TS og JP-05 i 6,5 m´s dybde på 560 mg Trichlorethylen/kg TS samt en vandanalyse for n-butylacetat samt en poreluftmåling for trichlorethylen.

Som for andre indtastningsfelter er der mulighed for at indtaste bemærkninger.

4.1.4 Teoretisk fasefordeling

Baseret på stoffernes iboende egenskaber beregnes en teoretisk fasefordeling under ligevægtsforhold. Se ligningerne 2, 3, 4, 6, 11 og 12 i appendiks 5.3 i MST oprydningsvejledning fra 1998 /6/. I denne eksempel for de overnævnte målte koncentration af benzen, trichlorethylen og nbutylacetat er fasefordeling (%) og de maksimale mængder forurening på jordpartikler, i porevand og i poreluft vist. Ligeledes vises den mættede dampkoncentration (damptryk), som svarer til den maksimale koncentration i poreluften over en kemikaliefase, dvs. frifaseforurening.

Kemiske data		Vælg stof for fugacitetsberegning eller indtast egne stofspecifikke data				
		Stof 1 E gen liste	Stof 2 E gen liste	Stof 3 E gen liste	Stof 4 E gen liste	Vis detailoplysninger
Stofnavn		Benzen	Trichlorethylen	Trichlorethylen		
					Eksempel-n- butylacetat	
	u	110.525	146.256	146.256	29.070	ma/m3 iorduol
I. I.	VIL, max	118.525	140.330	140.330	20.070	mg/m² joruvoi.
l N	N _{V, max}	89.500	64.000	64.000	250.000	mg/m³ jordvol.
N	M _{J, max}	7.315	10.475	10.475	9.500	mg/m³ jordvol.
Mættede damptryk, (C _{L,max}	398.415	487.852	487.852		mg/m³
Maksimal fordeling, luft	f	0,552	0,663	0,663	0,098	
Maksimal fordeling, vand	f.,	0,414	0,290	0,290	0,869	
Maksimal fordeling, jord	fi	0,034	0,047	0,047	0,033	

4.1.5 Beregnede koncentrationer fra målte data

Så snart der er indtastet en målt koncentration i enten jord, vand eller poreluft, samt jordtype, beregnes de teoretiske koncentrationer for de andre medier fra den teoretiske fasefordeling.

Brugeren bør ikke indtaste målte grundvands- eller poreluftkoncentrationer som overstiger vandopløseligheden (S) eller den mættede dampkoncentration (C_{Lmax}). Såfremt brugerne alligevel indtaster urealistisk høje vil regneark ikke vise en advarsel, men de beregnede porevand- eller poreluftkoncentrationer vil ikke overstige de maksimale værdier. De høje måleværdier kan dog blive anvendt i de andre beregningsmoduler.

Ved f.eks. 0,5 mg benzen /kg TS i en sandjord beregnes en poreluftkoncentration af 416 mg/m³ og en porevandskoncentration på 1,87 mg/l.

Fugacitet For hvert stof indtast målepunkt og evt prøvetagningsdato samt den målte værdi							
Målepunkt Dato		JP-01 1,0 19-01-2012	JP-05 6,5 28-01-2012	PL-1 10-05-2012	VP-2 28-01-2012		
Målt konc. i poreluft	CL			0,5		mg/m³	
Beregnet jordkoncentration	Ct	0	0	0,000131396	0	mg/kg TS	
Beregnet vandskoncentration	$\mathbf{C}_{\mathbf{V}}$	0	0	0,001311873	0	mg/l	
Målt konc. i grundvand	Cv				1,2	mg/l	
Beregnet poreluftskonc.	CL	0	0	0	22,456082	mg/m³	
Beregnet jordkonc.	Ct	0	0	0	0,040067765	mg/kg TS	
Målt konc. i jorden	Ct	0,5	560			mg/kg TS	
Beregnet poreluftskonc.	CL	1586,09558	487852,0556	0	0	mg/m³	
Beregnet vandskoncentration	Cv	7,12600756	1280	0	0	mg/l	
Fri fase?		nej	Risiko for frifase	nej	nej		
Anvendt Brugerdata		Ja, se bemærkning	Ja, se bemærkning	Ja, se bemærkning	Ja, se bemærkning		

Baseret på de målte eller beregnede porevands/grundvandskoncentrationer foretages desuden en vurdering af, hvorvidt der kan være risiko for fri fase væske, dvs. at koncentrationerne overskrider den maksimale opløselighed for stoffet. I eksempelet ovenfor er der risiko for fri fase TCE for den målet jordkoncentration på 560 mg trichlorethylen /kg TS, hvilket er angivet under skemaet i linjen "Fri fase?"

De beregnede porevands-/poreluftkoncentrationer er dog også fastlåst, således at de beregnede værdier i tabellen kan ikke overskride den maksimale opløselighed eller det mættede damptryk.

Ligeledes vises, om der er anvendt brugerdata (f.eks. fra egen stof- eller jordtypeliste eller indtastede fysisk-kemiske parametre, som anvendes i fugacitetsberegninger). I eksemplet ovenover i afsnit 2.3.3 er der f.eks. anvendt data for n-butylacetat fra egen stofliste.

I [dataark] for enkeltstoffer defineres for hvert målepunkt, hvilke endelige koncentrationer, der anvendes i de efterfølgende beregninger. Såfremt der er målt en poreluftkoncentration, anvendes denne i udeluft- eller indeklimaberegninger, ellers anvendes en poreluftkoncentration beregnet ift. en vandprøve, eller, som sidste mulighed, en poreluftkoncentration beregnet ift. en jordprøve.

Ligeledes anvendes ved risikovurdering over for grundvand enten den målte grundvandskoncentration, porevandskoncentrationen beregnet ift. en poreluftprøve, eller, som sidste mulighed, en porevandskoncentration beregnet ift. en jordprøve.

I dokumentationsarket (**Udskrift**) vises, om der er tale om, en målt eller en beregnet værdi ved risikovurdering af udeluft, indeklima, vertikal transport og grundvand.

4.1.6 Navigation, print og nulstilling af værdier

Navigeringen til andre moduler og inden for modulet foregår ved hjælp af knapperne i toppen af arket, som beskrevet i kapitel 2 og illustreret i **Fejl! Henvisningskilde ikke fundet.**.

Ved at klikke på knapperne yderst til højre kan fagmodulerne vælges (**Grundvand**, **Indeklima**, **Udeluft** eller **Vertikal transport**), og dermed hvilke risikovurderinger, der skal udføres.

Kemiske data og fug Lokaliteten	Opstart	Dataark	Grundvand	
Lokalitetsnavn:	Renseri	Olie & benzin	Udskrift	Indeklima
Adresse:	Stationsvej 2 Postnr./By: 3450	Nulstil værdier	Vejledning	Udeluft
Lokalitetsnummer:	255-2651 Projektnr: 14.2	33.00		
Beregning udføres for :	Benzen Trichlorethylen	Frichlorethylen Eksempel-n-	-	Vertikal transport

Ved hjælp af knapperne til venstre kan der navigeres tilbage til **Opstart** (lokalitetsdata) eller til **Olie og benzin** for beregning af fugacitet for olie- og benzinblandinger.

Nulstil værdier er beskrevet i afsnit 2.5 og betyder, at alle indtastede data f.eks. valgte jordtyper, stoffer indtastede koncentrationer, nulstilles. Det vil sige, at man kan starte forfra med en ny beregning. Såfremt der er indtastet nye jordtyper og nye stoffer i egne lister, vil disse ikke blive slettet, idet disse data kun kan slettes, mens menuen for egne lister er åben, jf. afsnit 2.3.

Ved at klikke på **Dataark** vises en oversigt over de anvendte værdier og parametre og evt. mellemregninger (se bilag 1).

Ved at klikke på **Vejledning** hentes en kort vejledning i, hvordan data indtastes. For den teoretiske baggrund henvises til Miljøstyrelsens vejledning nr. 7, 1998 /6/.

Ved at klikke på **Udskrift** åbnes for et ark som kan udskrives som projektdokumentation enten til den ønskede printer eller som pdf, jf. Figur 4.1.

Ved at klikke på **Udskriv ark** udskrives til brugerens standardprinter. For at vælge andre printer, opsætninger m.v. skal der anvendes Excel´s FILE/Print tab.

Fugacitetsb	eregninger		Udskrivark
Navn:	Renseri	Lokalitetsnr.: 255-2651	Luk
Adresse:	Stationsvej 2	Postnr./by: 3450	
Matrikel nr.:	Udenbys nr. 12f	Projekt nr.: 14.233.00	
Note	Kontrol af måledata		

Ved at klikke på Luk navigeres tilbage til modul for enkeltstoffer.

UPCI Standard data Inditated data </th <th>JORD kommentar ordtype ordtytvolumen vandindhold samlet porøsitet folumen af jordskellet forumenvægt ndhold af organisk kulstof Stoffer</th> <th></th> <th>Standard data 0,3 0,15 0,45 0,55 2,65 4,657</th> <th>Indtastede data and</th> <th>(angives med fe</th> <th>d)</th> <th></th> <th></th> <th></th>	JORD kommentar ordtype ordtytvolumen vandindhold samlet porøsitet folumen af jordskellet forumenvægt ndhold af organisk kulstof Stoffer		Standard data 0,3 0,15 0,45 0,55 2,65 4,657	Indtastede data and	(angives med fe	d)			
Shoffer formentage F Stol 1 Stol 2 Stol 3 Stol 4 Stol 4 <ths< th=""><th>Stotter</th><th></th><th>0,1</th><th>0,5</th><th>kg/l kg/l %</th><th></th><th>Bemærkninger om jordtype</th><th>Jordbyen er indtastet for JP-01 fra 1 m u.t. Organisk indho II 0.5%</th><th>id er beregnet fra glødetab</th></ths<>	Stotter		0,1	0,5	kg/l kg/l %		Bemærkninger om jordtype	Jordbyen er indtastet for JP-01 fra 1 m u.t. Organisk indho II 0.5%	id er beregnet fra glødetab
Matery Link MP JP-01 10 JP-05 55 PL-1 MV-P Jaho data dat	formmentar Forureningskomponent	V	Stof 1 Benzen	Stof 2 Trichlorethylen	Stof 3 Trichlorethylen	Stof 4 Eksempel-n- butvlacetat			
Maksimal ford, Jult fi 0.17 0.19 0.02 0.02 Maksimal ford, wind fi 0.34 0.25 0.26 0.04 Maksimal ford, wind fi 0.34 0.25 0.34 0.05 FUgacitetsberegninger Kommetar r mg/m mg/m ² mg/m ² mg/m ² Beregnet products, C., Q. 0.00131 mg/m mg/m ² mg/m ² mg/m ² Beregnet productskonc, C., Law and skono, C., Q. 0.05 5.55:04 mg/m ² mg/m ² Matk toon: I productskonc, C., Law and skono, C., Law and too and	Målepunkt Dato Molmasse Damptryk Vandopløselighed log oktanolivand ford. koeff. Koc Henrys konstant	MP dato m p S log K _{ow} K _{OC} K _H	JP-01 1.0 19-01-2012 78.1 12.639 1.790 2.13 23.72 0.223	JP-05 6,5 28-01-2012 131 9.199 1.280 2,42 47,51 0,381	PL-1 10-05-2012 131 9.199 1.280 2,42 47,51 0,381	VP-2 24-02-13 116 g/mol 5.000 mg/ 1,81 11,03 0,187	Bemærkninger om kemiske data	Der er anvendt værder fra Verschueren 1996 for n-bulylace	tat.
Eugacite/sberegninger Kommeniar minimizer minimizer minimizer Bemarkninger om fugacitet Berngent undkonc. Cr. 0.05 mg/m² mg/m² mg/m² Berngent undkonc. Cr. 0.00131 mg/m² mg/m² Berngent undkonc. Cr. 0.00131 mg/m² mg/m² Berngent undkonc. Cr. 0.0144 mg/kg TS mg/m² Berngent profilms.c. Cr. 0.155 5600 mg/m² mg/m² Berngent profilms.c. Cr. 0.156 5600 mg/m² mg/m² Statk tonc. i jorden Cr. 0.157 3.65 mg/m² mg/m² Statk tonc. Cr. 1.32 1.32.6 mg/m² mg/m² Statk tonc. i jorden Cr. 1.32.7 1.32.6 mg/m² mg/m² Statk tonc. i jorden Nint Socionaria Socionaria mg/m² mg/m² Statk tonc. i jorden Nint Socionaria Socionaria mg/m² mg/m² State tonchrine Socionaria	Maksimal ford, luft Maksimal ford, vand Maksimal ford, jord	fı f _v fj	0,17 0,38 0,44	0,19 0,25 0,57	0,19 0,25 0,57	0,02 0,64 0,34			
Nait konc. i jorden C, i 0.5 560 mg/mg/g TS mg/mg/mg/g Bergenet providitikance. C, i 1416 488.000 mg/mg/g Risko for tri fase? In 22 mg/mg/mg/mg/g mg/mg/mg/g Risko for tri fase? is a termentring Is, as termentring mg/mg/mg/g Bergeningerme utority and migmeme utority and firmarame NIRAS set termentring Mg/mg/mg/mg/g	Fugacitetsberegnin Kommentar Målt konc. i porelutt Beregnet jordkonc. Beregnet vandskonc. Målt konc. i grundvand Beregnet jordkonc. Beregnet jordkonc.				0,5 5,5E-04 0,00131	mg/m³ mg/kg TS mg/l 1.2 mg/l 22.5 mg/m³ 0.194 mg/m3 (TS)	Bemærkninger om fugacitet		
Risko for tri fase? Inj Mulghed for tri fase Piel Inj Anvend Brugordsta? Ja se bernarkning Ja, se bernarkning Ja, se bernarkning Ba, se bernarknin	Målt konc. i jorden Beregnet poreluftskonc. Beregnet vandskonc.	Ct CL Cv	0,5 416 1,87	560 488.000 1.280		mg/kg TS mg/m ³ mg/l			
Anvend Burgondata? As, se bemarkhing As, se bemarkhing As, se bemarkhing Berogningerne udfort af smaxmun NIRAS MiRAS	Risiko for fri fase?		nej	Mulighed for fri fase	nej	nej		L	
Jaio Underskrift	invendt Brugerdata? Beregningerne udført : Firmanavn Navn/initialer Dato/Underskrift	af <u>NIRAS</u> JAF	Ja, se bemærkning	Ja, se bemærkning Bi	Ja, se bemærkning eregningerne k entrolleret Godkendt	Ja, se bemærkning ontrolleret /godkendt af			

FIGUR 4.1 EKSEMPEL PÅ UDSKRIFT AF FUGACITETSBEREGNING (ENKELTSTOFFER)

[Note tekst]

4.2 Vertikal transport - Enkeltstoffer

I modulet for vertikal transport beregnes transport og evt. nedbrydning igennem et homogent jordlag ned til det førstkommende betydende grundvandsmagasin.

Modulet er baseret på beregninger beskrevet i Miljøprojektet om vertikal transport ned til det førstkommende betydende magasin /4/. Konceptet er illustreret i Figur 4.2 og kan anvendes for enten umættet eller vandmættet forhold.

FIGUR 4.2

KONCEPTUELLE MODELLER FOR VERTIKAL TRANSPORT I MÆTTET OG UMÆTTET HOMOGEN JORD.

Indledningsvis skal der i fugacitetsmodulet vælges op til fire forureningsstoffer. Herefter indtastes forureningsdata for de målte forureningsstoffer, således at vanddata eller den beregnede fordeling i porevand faser kan anvendes i **Vertikal transport** modul.

4.2.1 Kildeområdet

Længden og bredden af kilden, hvorfra der sker nedsivning, skal angives.

z er afstanden fra bunden af kilden til grundvandsspejlet, dvs. svarende til tykkelsen af det homogene jordlag (enten mættet ler eller umættet sand og ler).

Nettonedbør vælges fra en standardtabel for kommuner i Danmark eller indtastes specifikt. Der kan også oprettes egen liste i henhold til de samme principper som for jordtyper, jf. afsnit 2.3.1

Såfremt de longitudinale og transversale dispersiviteter ikke kendes, anvendes standardværdier, som beregnes i henhold til afstanden til grundvandspejlet. Dispersiviteten er generelt svær at estimere, men den longitudinale dispersivitet vurderes at være relateret til afstanden, z. I regnearket beregnes standardværdien for den longitudinale dispersivitet iht. figur 2 i appendiks 5.8 i MST vejledning nr. 7, 1998 /6/. Transversal dispersivitet antages at være 1/10 del af den longitudinale dispersivitet. Porevandshastigheden vises først efter der er indtastet jordparametrene.

Vertikal transport i de	tumæ	ttede zone				1	1
					Enkeltstoffer	Dataark	Grundvand
Lokalitetsnavn:		Renseri			Overfør værdier	Udskrift	Udeluft
Adresse:		Stationsvej 2	Postnr./By:	3450	Nuletil værdior	Voilodning	Indoklima
Lokalitetsnummer:		255-2651	Projektnr:	14.233.00	Nuisui vaeruier	vejiedning	Indekiina
Beregning udføres for :		Benzen	Trichlorethylen	Trichlorethylen	Eksempel-n-		
Kildeområde		Indtast data om kildeor	nråde.			Bemærkning	
Længde af kildeområdet	Y	200	m				
Bredde af kildeområdet	Х	10	m				
		Nedbør Egen liste					
Nettonedbør	Ν	300	mm/år				
Kommune/Egn		Allerød					
Afstand til grundvandsspejl	z	10	m				
Porevandhastighed	Vw	0,75	m/år (Porevandhastighe	den vises kun efter indtas	tning af jordparametre)		
		Normal range (stiger med afstand z) 2-20 m	Beregnet iht.z jf. app. 5.8 figur 2.0	Brugerdata			
Longitudinal dispersivitet	$\alpha_{L,W}$	0,004-0,07	0,028				
Transversal dispersivitet	α _{T,W}	0,0004-0,007	0,0028				

4.2.2 Jordart

For vertikal transport igennem umættet homogen jord, kan der enten vælges en standardjord, f.eks. sand eller angives lokalspecifikke værdier.

J	Jordparametre Vælg jordart for fugacitetsberegning eller indtast egen jordartsdata									Ændr bemærkning
		Jordtype	Poreluft- volumen VL	Vand- indhold V _v	Samlet porøsitet ≈=VL+Vv	Volumen af jordskellet V _J	Korn- rumvægt (kg/l) d	Bulkmasse fylde (kg/l) P	% indhold af organisk kulstof f _{cc}	
	Jordtype Egen liste	Sand	0,0 - 0,45 0,3	0,05 - 0,35 0,15	0,45	0,55	2,6 - 2,7 2,65	1,4575	0,1	

For vertikal transport igennem mættet homogen jord, kan V_V sættes til maksimum porøsitet og V_L til nul. Såfremt man justerer V_V , men ikke samtidig justerer V_L til nul, vil den samlede porøsitet skifte til en rød farve som advarsel.

Jordparametre Vælg jordart for fugacitetsberegning eller indtast egen jordartsdata									Ændr bemærkning
	Jordtype	Poreluft- volumen VL	Vand- indhold V _v	Samlet porøsitet ≈VL+Vv	Volumen af jordskellet V _J	Korn- rumvægt (kg/l) d	Bulkmasse fylde (kg/l) P	% indhold af organisk kulstof f _{oc}	
Jordtype Egen liste	Ler	0,00 - 0,25 0,1 0	0,20 - 0,40 0,3 0,45	0,45	0,55	2,7 - 2,8 2,7	1,485	0,1	

4.2.3 Forureningsdata

Forureningsdata overføres fra enkeltstoffer, eller der kan indtastes andre værdier i de hvide felter for test af andre værdier.

Herudover skal der angives enten aerobe eller anaerobe nedbrydningsforhold ved at klikke på enten **Aerobe forhold** eller **Anaerobe forhold**.

Forurening		Data for porevandskor Indtast eventuel andre	Data for porevandskoncentration er overført fra fugacitetsmodulet Indtast eventuel andre testværdier eller en baggrundskoncentration								
Stofnavn (fra enkeltstoffer)		Benzen	Trichlorethylen	Trichlorethylen	Eksempel-n- butylacetat						
Målepunkt		JP-01 1,0	JP-05 6,5	PL-1	VP-2						
Dato		19-01-2012	28-01-2012	10-05-2012	28-01-2012						
Porevandkoncentration	Cv	1,8702	1280,0000	0,0013	1,2000	mg/l					
Test af andre værdier			0,5			mg/l					
Angiv nedbrydningforhold Nedbrydningsforhold Image: Aerobe forhold Image: Aerobe											

Som udgangspunkt foretages beregningerne uden nedbrydning, og alle standard nedbrydningskonstanter for enkeltstoffer i den umættede zone (vertikal transport) er defineret som nul.

Det er muligt for brugeren at indtaste alternative værdier for Henrys konstant, K_{oc}, diffusionskoefficienter eller nedbrydningskonstanter i arket **Enkeltstoffer**. Diffusionskoefficienterne i luft og vand hentes fra stofdatabasen for de fire udvalgte stoffer. Såfremt andre stoffer skal evalueres, skal deres fysisk-kemiske egenskaber indtastes under kemiske data under **Enkeltstoffer** eller oprettes i brugerens egen liste for kemiske stoffer. Såfremt der ikke haves andre data er standard diffusionskoefficienten i vand beregnet som en faktor 10.000 mindre end diffusionskoefficienten i luften.

Det er muligt for brugeren at indtaste forslag til nedbrydningskonstanter i **Enkeltstoffer**, såfremt nedbrydning ønskes medtaget.

	Stof 1	E gen liste
Stofnavn	Ber	izen
CAS-nummer	CAS 7	1-43-2
Molmasse m	78,1	
Damptryk p	12639	
Vandopløselighed S	1790	
Henry's konstant K _H	0,22258	
Log oktanol/vand ford, koeff. log K_{ow}	2,13	
Koc K _{oc}	23,7247	
Grundvandskvalitetskriterie, GV	1	
Afdampningskriterie, luft	0,00013	
Jordkvalitetskriterie		
Afskæringskriterie		
Diffusions koefficient i luft DL	9,3E-06	
Diffusions koefficient i vand $$D_W$$	9,3E-10	
Vindhastighed	1	
1. ordens nedbrydn. grundvand anaerobe forhold	0,001	0
1. ordens nedbrydn. grundvand aerobe forhold	0,01	
1. ordens nedbrydn. umættet zone anaerobe forhold	0	
1. ordens nedbrydn. umættet zone aerobe forhold	0	0,001
1. ordens nedbrydn. poreluft aerobe forhold	0	

4.2.4 Den stationære porevandskoncentration

Som udgangspunkt foretages beregninger uden nedbrydning, i hvilket tilfælde den stationære porevandskoncentration lige over grundvandet vil være lig porevandskoncentrationen lige under kilden. Ved beregningen af risiko over for grundvand i grundvandsmodullet anvendes kun resultatet for porevandet under stationære forhold. Den samlede forureningsflux (g/år) til grundvandsmagasinet er vist på indtastningsarket.

Beregning: Stationær konce	entration efter nedsi	vning igennem den i	umættede zone (z)		Ændr bemærkning
C(z), Porevandkoncentration lige over grundvand (input til trin 1a)	1,8702	0,5000	0,0013	1,2000	mg/I Se App. 5.6, lign. 26 i Miljøprojekt: Vertikal transport
Grundvandskriterie	0,0010	0,0010	0,0010	0,0100	mg/l
Overskridelse af kriteriet	1.870	500	1	120	gange
Anvendt nedbrydningskonstant	0	0	0	0	dage ⁻¹
Retardationskoefficient R	1,2	1,5	1,5	1,1	
Total flux J	1122,1	300,0	0,8	720,0	g/år
Anvendt brugerdata	Ja, se bemærkning	Ja, se bemærkning	Nej	Ja, se bemærkning	

Hvis der skal regnes med nedbrydning skal nedbrydningskonstant indtastes i arket **Enkeltstoffer**. Ved beregninger med nedbrydning vil koncentrationer aftage under den vertikal transport igennem jordlagene. Den stationære porevandskoncentration lige over grundvandet vil derfor være mindre end porevandskoncentrationen lige under kilden. Den anvendte nedbrydningskonstant kunne ses på indtastningsarket (se figuren neden for) og på udskriften. I Eksemplet nedenunder beregningen er vist med en umættet sandjord.

Forurening	Data for porevandskor Indtast eventuel andre	ncentration er overført fr testværdier eller en bag		Ændr bemærkning					
Stofnavn (fra enkeltstoffer)	Benzen	Trichlorethylen	Trichlorethylen	Eksempel-n- butylacetat					
Målepunkt	JP-01 1,0	JP-05 6,5	PL-1	VP-2					
Dato	19-01-2012	28-01-2012	10-05-2012	28-01-2012					
Porevandkoncentration C _V	1,8702	1280,0000	0,0013	1,2000	mg/l				
Test af andre værdier		0,5			mg/l				
Angiv nedbrydningsforhold ledbrydningsforhold C Anaerobe forhold Beregning: Stationær koncentration efter nedsivning igennem den umættede zone (z)									
C(z), Porevandkoncentration lige over grundvand (input til trin 1a)	0,6588	0,5000	0,0013	0,0049	Ændr bemærkning mg/l Se App. 5.6, lign. 26 i Miljøprojekt: Vertikal transport				
Grundvandskriterie	0,0010	0,0010	0,0010	0,0100	ned til førstkommende betydende magasin mg/l				
Overskridelse af kriteriet	659	500	1	nej	gange				
Anvendt nedbrydningskonstant	0,001	0	0	0,01	dage ⁻¹				
Retardationskoefficient R	1,2	1,5	1,5	1,1					
Total flux J	395,3	300,0	0,8	3,0	g/år				
Anvendt brugerdata	Ja, se bemærkning	Ja, se bemærkning	Nej	Ja, se bemærkning					

4.2.5 De transiente porevandskoncentrationer

Beregningen af de transiente porevandskoncentrationer er et hjælpeværktøj, som kan anvendes til at forbedre den konceptuelle forståelse af den vertikale transport fra kilden til grundvand, idet beregninger visualiserer porevandskoncentrationerne igennem jordlagene som en funktion af tiden.

Ved beregningen af risiko over for grundvand i grundvandsmodullet anvendes kun resultatet for porevandet under stationære forhold. Som nævnt i afsnit 4.2.4 vil porevandskoncentrationen lige over grundvandet være lig med porevandskoncentrationen lige under kilden med mindre der foregår nedbrydning. Ved beregning af de transiente koncentrationer kan der indtastes en transporttid, hvorefter kan den transiente porevandskoncentration lige over grundvandspejlet aflæses. I eksemplet nedenunder er den transiente porevandkoncentration lige over grundvandsspejlet 0,31 mg/l efter 2 år. I eksemplet er afstanden til grundvandsspejlet (z) 10 m og ved at klikke på flueben Stof 1 geneneres en figur som viser koncentrationsprofilerne igennem jordlagene efter forskellige tidsperioder.

Såfremt nedbrydning medtages (i eksemplet nedenfor vises aerobe forhold med en nedbrydningskonstant på 0,001 dag⁻¹), er porevandskoncentrationerne væsentligt lavere efter f.eks. 2 år.

Porevandskoncentrationen lige over grundvandet er selvfølgelig væsentlig højere, hvis jordlaget (z) kun er 5 m (i stedet for 10 m), idet transporttiden er mindre og der derfor foregår mindre nedbrydning før grundvandspejlet træffes.

4.2.6 Mættede forhold

For vertikal transport igennem mættet homogen jord, sættes V_V til maksimum porøsitet og V_L til nul, jf. afsnit 4.2.2.

Jordparametre	Ændr bemærkning							
Jor	Poreluft- rdtype volumen VL	Vand- indhold V _V	Samlet porøsitet ≋=VL+Vv	Volumen af jordskellet Vj	Korn- rumvægt (kg/l) d	Bulkmasse fylde (kg/l) ρ	% indhold af organisk kulstof f _{oc}	
Jordtype I Egen liste	Ler 0,00 - 0,25 0,1 0	0,20 - 0,40 0,3 0,45	0,45	0,55	2,7 - 2,8 2,7	1,485	0,1	

De vandmættede forhold har ingen betydning for de stationære koncentrationer, idet porevandskoncentrationen lige over grundvandet vil være lig med porevandskoncentrationen lige under kilden.

Under vandmættede forhold sker gennembrud til grundvandsmagasinet langsommere end for en standard lerjord, og dette betyder, at nedbrydning har større betydning for den maximal koncentration i det porevand, dernår ned til grundvandsmagasinet.

I et eksempel med 10 m vandmættede ler og nedbør på 300 mm/år tager det op 14 år, før der sker gennembrud til grundvandet. I løbet af de 14 år sker der nedbrydning således, at den stationære porevandkoncentration aftager fra 1,87 mg/l lige under kilden til 0,0087 i 10 m´s dybde lige over grundvandszonen.

4.2.7 Navigation, print og nulstilling af værdier

Navigeringen til andre moduler og inden for modulet foregår ved hjælp af knapperne i toppen af arket, som beskrevet i kapitel 2 og illustreret i **Fejl! Henvisningskilde ikke fundet.**.

Ved at klikke på knapperne yderst til højre kan fagmodulerne vælges (**Grundvand**, **Indeklima** eller **Udeluft**) og dermed hvilke andre risikovurderinger, der eventuelt skal udføres.

Vertikal transport i det umættede zone				Enkeltstoffer	Dataark	Grundvand
Lokalitetsnavn:	Renseri	-		Overfør værdier	Udskrift	Udeluft
Adresse:	Stationsvej 2	Postnr./By:	3450	Nuletil værdior	Veiledning	Indeklima
Lokalitetsnummer:	255-2651	Projektnr:	588889	Huisti værdier	Vejiedning	Indekiina
Beregning udføres for :	Benzen Trichlor	ethylen	Trichlorethylen			

I toppen af arket kan der navigeres tilbage til Enkeltstoffer, hvor måle- og stofdata kan ændres.

Ved at klikke på **Dataark** vises en oversigt over de anvendte værdier og parametre og evt. mellemregninger.

Nulstil værdier er beskrevet i afsnit 2.5 og betyder, at alle indtastede data, f.eks. de valgte jordtyper og indtastede værdier som "Test af andre værdier", nulstilles. Porevandskoncentrationer, der er overført fra **Enkeltstoffer**, nulstilles ikke.

Overfør værdier betyder, at der kan overføres oplysninger om jordlagstyper og -tykkelser samt om det forurenede område fra modul for **Udeluft for olie- og benzinblandinger**. Inden dataoverførelsen gennemføres, kommer en advarselstekst om, at funktionen vil overskrive eventuelt indtastede værdier i regnearket.

Ved at klikke på **Vejledning** hentes en kort vejledning i, hvordan de enkelte data indtastes. For en mere teoretisk baggrund henvises til Miljørapport /4/.

Ved at klikke på **Udskrift** åbnes for et ark som kan udskrives som projektdokumentation enten til den ønskede printer eller som pdf, jf. Figur 4.3.

Ved at klikke på **Udskriv ark** udskrives til brugerens standardprinter. For at vælge andre printer, opsætninger m.v. skal der anvendes Excel's FILE/Print tab.

Vertikal tran	nsport		Udskriv ark
Navn: Adresse:	Renseri Stationsvej 2	Lokalitetsnr.: 255-2651 Postnr/by: 3450	Luk
Note	Kontrol af måledata	Projekt nr.: <u>566669</u>	

Ved at klikke på Luk navigeres tilbage til modul for Vertikal transport.

Vortikal transpo	•		Vertikel transpor	+	
Lokalitaton	l .		vertikai transpor	ll la l	
Navn:	Benseri Lokalitetanr.: 255-2651		Navn:	Renseri Lokaltetser : 255-2651	
Adresse:	Stationsvej 2 Postnriby: 3450		Adresse:	Stationsvej 2 Postnriby: 3450	
Nata	Projekt nr.: 588889	-	Note	Projekt nr.: 588889	
14010	Konto a mareoata		Bemærkninger	test 1	
Kildeområde			om kildeområde		
Kommentar					
Længde af kildeområdet Bredde af kildeområdet	Y 200 m x 10,0 m				
Nettonedbør Kommune/Egn	Standard data Indtastede data (angives med fed) N 300 mm/ár Allered				
Afstand til grundvandsspe	Z 10,0 m				
Longitudinal dispersivitet	α _{L.W} 0,0284				
Transversal dispersivitet	a _{T.W} 0,0028				
lordnaramotro			Bemærkninger	test2	
Kommentar	Standard data Indiastede data (anglyes med fed)		om jordparametre		
Jordtype	Sand				
Vandindhold	θw 0,15 0,45				
Luftindhold Total porasitet (VL+VV)	ea 0,3 0 0				
% organisk indhold	foc 0,1				
Bulkmassefylde	ρ 1,4575 kg/l				
Nedbrudningeforhold	E Annorthe forhold				
Ot-Man an at-fam					
Stoffer og stoleg	enskaper				
Kommentar Forureningskomponent	Stor 1 Stor 2 Stor 3 Stor 4		Bemærkninger om forurening	test 3	
	Benzen Trichlorethylen Trichlorethylen		on fordiering		
Målepunkt	JP-01 1,0 JP-05 6,5 PL-1				
Dato Kildekonsentration	19-01-2012 28-01-2012 10-05-2012 mg/				
Bereanet værdi anvendt	Nei Ja Ja				
Testværdi anvendt	Nej Nej				
1. ordens nedbrydn.konst	aerob 0 0,001 0 0 dag"				
1. ordens nedbrydn.konst.	anaerob 0 0 0 dag				
Diffusionskoefficient (unt)	Dda 9,3E-00 7,2E-00 7,2E-00 m ² /e				
K _{oc}	K _{DC} 24 48 48 mg/l				
Henrys konstant	K _H 0,223 0,381 0,381		Bemærkninger	Test 4	
Borogning: Vortikal	raneport		om beregning		
Kommentar	V				
Stationær koncentrati	on efter nedsivning igennem den umættede zone (z)				
C(z), Porevandkoncentrat	on lige 10,0 1.280 0,0013 mg/l				
over grundvand (input til ti Grundvandskriterie	n 1a) 0.001 0.001 0.001 mol				
Overskridelse af kriteriet	10.000 1.280.000 1 gange				
Transient koncentration	efter nedsivning igennem den umættede zone (z) efter tid (t)				
Tid, år	10,0				
C(z,t), transient porevand					
lige over grundvand efter	id, t 1,51E-07 3,64E-08 3,73E-14 mg/l		Bemærkninger	Der er anvendt værdier fra Verschueren 1996 for n-butylacetat.	
Anvendt Brugerdata?	Ja, se bemærkning Ja, se bemærkning Ja, se bemærkning		om kerniske stoffer	rvedbrydningskonstanter for benzen og trichlörethylen i grundvand under anaerobe forhold er sat til 0.	
				Nedbrydningskonstanter for benzen i umættede zone under aerobe anaerobe forhold	
Beregningerne udført	af Beregningerne kontrolleret /godkendt af	r		er sat a 0,001.	
Firmanavn	NIRAS Kontrolleret				
Navn/initialer Dato/Linderskrift	JAF Godkendt				
Dato onderskritt					
Beregningerne er udfort mer	de ovenfor angivne data og uden at der er foretaget ændringer at beregningeformler				
Udskrevet den 03-09-201308	:18	Side 1 af 3	Udskrevet den 03-09-201308	3:18	Side 2 af 3

FIGUR 4.3

EKSEMPEL PÅ UDSKRIFT FOR VERTIKAL TRANSPORT – ENKELTSTOFFER (SIDE 3 MED FIGURER ER IKKE VIST).
4.3 Grundvand - Enkeltstoffer

Efter indtastning af lokalitetsdata på opstartsiden og forureningsdata i fugacitetsmodulet, kan der foretages en beregning af konsekvenser for grundvand, jf. appendiks 5.6 i MST´s oprydningsvejledning fra 1998 /6/.

4.3.1 Valg af model for den kildenære opblandingsmodel

Man kan vælge mellem to beregningstyper:

a) Koncentrationen i det første betydende grundvandmagasin beregnes ud fra kildestyrkekoncentrationen, dvs. enten målt eller beregnet koncentration i porevand eller det terrænnære grundvand ved kilden. Desuden kan denne model bruges ved beregning af grundvandsbidrag efter vertikal transport med eller uden nedbrydning i den umættede zone, jf. afsnit 4.2.

Baseret på arealet og bredden af det forurenede område i nedstrøms retning samt nettonedbør for området beregnes en teoretisk koncentration (trin 1a) i de øverste 0,25 cm af grundvandsmagasinet.

b) Den målte koncentration i det første betydende grundvandsmagasin omregnes til en tilsvarende teoretisk koncentration (trin 1b) i de øverste 0,25 cm af grundvandsmagasinet.

4.3.2 Trin 1a

4.3.2.1 Det forurenede område – trin 1a

Arealet og bredden af det forurenede område indtastes.

Grundvandskoncentrationen i Lokaliteten	det først betydende r		Enkeltstoffer	Dataark	Indeklima	
Lokalitetsnavn:	Renseri			Overfør værdier	Udskrift	Udeluft
Adresse:	Stationsvej 2	Stationsvej 2 Postnr./By:		Nulstil værdier	Veiledning	Vertikal transport
Lokalitetsnummer:	255-2651	Projektnr:	14.233.00			
Beregning udføres for :	Benzen	Trichlorethylen	Trichlorethylen	Eksempel-n-		
Det forurenede område	A - Beregnet koncentratior i kilden (porevand, terrænn [Data overføres fra modulet Vertikal transport]	Der skal vælges melle n - ud fra en målt konc. ært grundvand) t Enkeltstoffer eller	m to beregningstyper: B - Målt koncentrat betydende magasir [Data overføres fra	tion i toppen af første n modulet Enkeltstoffer]	Bemærknin	9
	• A: Beregnet kond	entration	OB: Målt kon	B: Målt koncentration		
Areal af det forurenede område	100	m²				
Bredde af det forurenede område E	20	m				
Nettonedbør M Kommune/Egn	Nedbør Egen liste 300 300 Allerød Lynge	mm/år				

Nedbørsdata for den pågældende kommune kan vælges ved at klikke på rullemenuen [Nedbør]. Alternativt kan man hente eller oprette nedbørsdata for den pågældende lokalitet i [egen liste], jf. afsnit 2.3. Der kan også indtastes en enkeltværdi i det hvide indtastningsfelt.

		Nedbør	Egen liste	1
Nettonedbør	N	300	300	mm/år
Kommune/Egn		Alle	erød	
		Lyr	nge	

Der kan endvidere indtastes bemærkninger vedrørende valg af data eller model, jf. afsnit 2.4.

4.3.2.2 Forureningsdata – trin 1a

I trin 1a kan man vælge hvilke forureningsdata, der skal anvendes i beregningen, dvs. de målte eller beregnede koncentrationer fra fugacitetsmodulet, som overføres til grundvandsmodulet, de

beregnede porevandskoncentrationer fra vertikal transport i den mættede eller umættede zone eller egne testværdier.

Det er muligt for brugeren at indtaste alternative værdier for diffusionskoefficient i vand og K_{ow} i modulet **Enkeltstoffer.**

I dataarket for **Enkeltstoffer** defineres for hvert målepunkt, hvilke endelige koncentrationer, der skal anvendes i de efterfølgende beregninger. Såfremt der er målt en grundvandskoncentration, anvendes denne. Ellers anvendes en porevandskoncentration beregnet ift. en poreluftprøve, eller som sidste mulighed anvendes en porevandskoncentration beregnet ift. en jordprøve. I eksemplet nedenfor anvendes de beregnede grundvandskoncentrationer iht. til jordkoncentrationer for målepunkt JP-1-0,5 (1,87 mg/l), JP-0,5 6,5 (1.280 mg/l), den beregnede koncentration iht. poreluftkoncentration for PL-1 (0,001 mg/l) og den målte grundvandskoncentration for VP-2 (1,2 mg/l). Såfremt der anvendes en beregnet værdi, er dette noteret i udskriften, jf. Figur 4.4.

Forurening	Data f Indtas	or forureningen er over t eventuel baggrundsko	Bemærkning					
Stofnavn (fra enkeltstoffer)		Benzen	Trichlorethylen	Trichlorethylen	Eksempel-n- butylacetat			
Målepunkt		JP-01 1,0	JP-05 6,5	PL-1	VP-2			
Dato		19-01-2012	28-01-2012	10-05-2012	28-01-2012			
Forureningsdata: Trin 1a								
Baggrundskoncentration	Cg					mg/l		
Kildestyrkekoncentration	C ₀	Vælg kildestyrkekonce	Vælg kildestyrkekoncentrationen for beregningen					
Fra enkeltstoffer		1,870186643	1280	0,001311873	1,2	mg/l		
C Fra vertikal transport modul		0,6588	1280,0000	0,0013	0,0049	mg/l		
C Test andre værdier						mg/l		

Der er dog også mulighed for at indtaste en baggrundskoncentration (Cg) for grundvand opstrøms kilden.

4.3.3 Trin 1b

4.3.3.1 Det forurenede område – trin 1b

Såfremt grundvandskoncentrationerne målte i det første betydende magasin skal anvendes i beregningen, vælges B: **Målt koncentration**, og filterlængden indtastes.

Det forurenede område	Der skal vælges mellem		
- - -	A - Beregnet koncentration - ud fra en målt konc. i kilden (porevand, terrænnært grundvand) [Data overføres fra modulet Enkeltstoffer eller Vertikal transport]	B - Målt koncentration i toppen af første betydende magasin [Data overføres fra modulet Enkeltstoffer]	Bemærkning
	A: Beregnet koncentration	B: Målt koncentration	
	Angiv filterlængde		
Filterlængde	l 2 m		

Der kan indtastes en bemærkning vedrørende valg af data eller model, jf. afsnit 2.4.

4.3.3.2 Forureningsdata – trin 1b

I trin 1b kan man kun anvende målte koncentrationer i grundvandet, som overføres direkte fra **Enkeltstoffer**, som f.eks. den målte værdi for VP-2.

Forurening [Data fo ndtast	or forureningen er overf t eventuel baggrundsko	Bemærkning			
Stofnavn (fra enkeltstoffer)		Benzen	Trichlorethylen	Trichlorethylen	Eksempel-n- butylacetat	
Målepunkt		JP-01 1,0	JP-05 6,5	PL-1	VP-2	
Dato		19-01-2012	28-01-2012	10-05-2012	28-01-2012	
Forureningsdata:Trin 1b						
Målt koncentration (fra enkeltstoffer)	C ₁	0	0	0	1,2	mg/l
Test af andre værdier		0,09				mg/l

Der kan dog altid indtastes andre testværdier, som f.eks. 0,09 mg/l for benzen i den viste eksempel. I sådanne tilfælde vil det af indtastningssiden og udskriften fremgå, at der er anvendt brugerdata. Det er ligeledes muligt at indtaste egne bemærkninger vedr. test af andre værdier.

4.3.4 Oplysninger om grundvandsmagasin

Før der kan foretages en beregning, skal der indtastes oplysninger om det første betydende magasin.

Det første betyde	ende magasin	Indtast data for det første betydende magasin, hvori risiko skal beregnes								Bemærkning	
			Hydraulisk gradient (m/m)	Hydraulisk Iednings- evne	Effektiv porøsitet	Vand- mættede porøsitet	Bulk- masse- fylde (kg/l)	% indhold organisk kulstof	Tykkelse af magasin (m)	Opblandings- dybde (m)	
			<u> </u>	k	eff.	ew	ρ	f _{oc}	maxd _m	d _m	
	Aquifermateriale Egen liste	Sand, mellemkornet	0,005	5E-05-1E-04 5,00E-05	0,15 - 0,3 0,2	0,35 - 0,5 0,45	<u>1,4 - 1,7</u> <u>1,7</u>	0,01	10	0,666	
Gns. porevandhastigh	ed Vp	39,45 m/år									
Afstand til teoretisk beregningspunkt	L	39,447 m									
Transporttid til teoretis beregningspunkt	sk ttid	1,00 år									

Den hydrauliske gradient er en vigtig parameter, som <u>skal</u> indtastes.

For de andre parametre kan der vælges standardværdier for aquifermateriale (ved at klikke på [Aquifermateriale]). Alternativ kan man hente eller oprette aquiferdata for den pågældende lokalitet i [egen liste] eller man kan indtaste en enkeltværdi i et af de hvide felter, jf. afsnit 2.3.

Bemærk dog at standardegenskaber for aquifermaterialer er justeret i forhold til JAGG 1.5, idet der er oprettet en særlig valgliste for aquifermaterialer. F.eks. er organisk indholdet (f_{oc}) for sand justeret fra 0,1% til 0,01%, som anses for mere realistisk for et sandmagasin i grundvandszone.

Det første betyder	nde magasin	Indtast data for det første betydende magasin, hvori risiko skal beregnes						Bemærkning		
			Hydraulisk gradient (m/m)	Hydraulisk lednings- evne	Effektiv porøsitet	Vand- mættede porøsitet	Bulk- masse- fylde (kg/l)	% indhold organisk kulstof	Tykkelse af magasin (m)	Opblandings- dybde (m)
			i.	k	eff.	ew	ρ	f _{oc}	maxd _m	d _m
-	Aquifermateriale Egen liste	Sand, mellemkornet	0,005	5E-05-1E-04 5.00E-05 1,00E-04	0,15 - 0,3 0,2	0,35 - 0,5 0,45	1,4 - 1,7 1,7 1,4575	0.01	10	1,381
Gns. porevandhastighe	d Vp	78,89 m/år								
Afstand til teoretisk beregningspunkt	L	78,894 m								
Transporttid til teoretisk beregningspunkt	< ttid	1,00 år								

Når disse oplysninger om grundvandsmagasinet er indtastet, kan man aflæse den gennemsnitlige porevandshastighed (m/år), afstanden til det teoretiske beregningspunkt (m) og transporttiden til beregningspunkt (år).

4.3.5 Beregning trin 1a og trin 2a

Når alle data er indtastet, kan de beregnede koncentrationer i trin 1a og 2 aflæses. Overskridelser af grundvandskriterierne vist med rødt.

Forurening	Data f Indtas	or forureningen er overf t eventuel baggrundsko	for umættet zone	Bemærkning					
Stofnavn (fra enkeltstoffer)		Benzen	Trichlorethylen	Trichlorethylen	Eksempel-n- butylacetat				
Målepunkt		JP-01 1,0	JP-05 6,5	PL-1	VP-2				
Dato		19-01-2012	28-01-2012	10-05-2012	28-01-2012				
Forureningsdata: Trin 1a									
Baggrundskoncentration	Cg					mg/l			
Kildestyrkekoncentration	C ₀	Vælg kildestyrkekonce	ælg kildestyrkekoncentrationen for beregningen						
Fra enkeltstoffer		1,870186643	1280	0,001311873	1,2	mg/l			
C Fra vertikal transport modul		0,6588	1280,0000	0,0013	0,0049	mg/l			
C Test andre værdier						mg/l			
Beregning: Grundvand									
Grundvandskvalitetskriterie		0,001	0,001	0,001	0,01	mg/l			
Grundvandskoncentration: Trin 1	C ₁	0,515	352,637	0,000	0,331	mg/l			
Overskridelse af kriteriet Trin 1		515	352637	nej	33	gange			
Grundvandskoncentration: Trin 2	C ₂	0,120	82,438	0,000	0,077	mg/l			
Overskridelse af kriteriet Trin 2		120	82438	nej	8	gange			

Såfremt kildestyrkekoncentrationen fra **Vertikal transport** vælges, er beregningsgrundlaget de værdier, som hentes fra **Vertikal transport.** Såfremt nedbrydning ikke medtages i den vertikale transport- modul vil værdien dog være den samme som fra enkeltstoffer. Såfremt nedbrydningen er medtaget i beregning af den vertikale transport vil porevandskoncentrationen ved grundvandsspejlet være mindre end lige under kilden som vist i eksemplet nedenunder.

Forurening	Data f Indtas	or forureningen er over t eventuel baggrundsko	for umættet zone	Bemærkning		
Stofnavn (fra enkeltstoffer)		Benzen	Trichlorethylen	Trichlorethylen	Eksempel-n- butylacetat	
Målepunkt		JP-01 1,0	JP-05 6,5	PL-1	VP-2	
Dato		19-01-2012	28-01-2012	10-05-2012	28-01-2012	
Forureningsdata: Trin 1a						
Baggrundskoncentration	Cg					mg/l
Kildestyrkekoncentration	C ₀	Vælg kildestyrkekonce	entrationen for beregning	jen		
○ Fra enkeltstoffer		1,870186643	1280	0,001311873	1,2	mg/l
• Fra vertikal transport modul		0,6588	1280,0000	0,0013	0,0049	mg/l
C Test andre værdier						mg/l
Beregning: Grundvand						
Grundvandskvalitetskriterie		0,001	0,001	0,001	0,01	mg/l
Grundvandskoncentration: Trin 1	C ₁	0,181	352,637	0,000	0,001	mg/l
Overskridelse af kriteriet Trin 1		181	352637	nej	nej	gange
Grundvandskoncentration: Trin 2	C ₂	0,042	82,438	0,000	0,000	mg/l
Overskridelse af kriteriet Trin 2		42	82438	nej	nej	gange

Såfremt man vælger **Test andre værdier** og indtaster en værdi, foretages en ny beregning, f.eks. i eksemplet er der indtastet 0,01 mg/l for stof 1 (benzen).

Forurening	Data f Indtas	or forureningen er over t eventuel baggrundsko	for umættet zone	Bemærkning		
		Benzen	Trichlorethylen	Trichlorethylen	Eksempel-n-	i i
Stofnavn (fra enkeltstoffer)		Denzen		memoreunyien	butylacetat	
Målepunkt		JP-01 1,0	JP-05 6,5	PL-1	VP-2	
Dato		19-01-2012	28-01-2012	10-05-2012	28-01-2012	
Forureningsdata: Trin 1a						
Baggrundskoncentration	Cg					mg/l
Kildestyrkekoncentration	C ₀	Vælg kildestyrkekonce	entrationen for beregning	gen		
C Fra enkeltstoffer		1,870186643	1280	0,001311873	1,2	mg/l
C Fra vertikal transport modul		0,6588	1280,0000	0,0013	0,0049	mg/l
Test andre værdier		0,01				mg/l
Beregning: Grundvand						
Grundvandskvalitetskriterie		0,001	0,001	0,001	0,01	mg/l
Grundvandskoncentration: Trin 1	C ₁	0,003	#VALUE!	#VALUE!	#VALUE!	mg/l
Overskridelse af kriteriet Trin 1		3	#VALUE!	#VALUE!	#VALUE!	gange
Grundvandskoncentration: Trin 2	C ₂	0,001	#VALUE!	#VALUE!	#VALUE!	mg/l
Overskridelse af kriteriet Trin 2		nej	#VALUE!	#VALUE!	#VALUE!	gange

4.3.6 Beregning trin 1b og trin 2b

Når alle data er indtastet, kan de beregnede koncentrationer i trin 1b og 2 aflæses. Overskridelser af grundvandskriterier vist med rødt.

Forurening	for umættet zone	Bemærkning				
Stofnavn (fra enkeltstoffer)		Benzen	Trichlorethylen	Trichlorethylen	Eksempel-n- butylacetat	
Målepunkt		JP-01 1,0	JP-05 6,5	PL-1	VP-2	
Dato		19-01-2012	28-01-2012	10-05-2012	28-01-2012	
Forureningsdata:Trin 1b Målt koncentration (fra enkeltstoffer)	C ₁	0	0	0	1,2	mg/l
Test af andre værdier		0,01				mg/l
Beregning: Grundvand						
Grundvandskvalitetskriterie		0,001	0,001	0,001	0,01	mg/l
Grundvandskoncentration: Trin 1	C ₁	0,080			9,600	mg/l
Overskridelse af kriteriet Trin 1		80			960	gange
Grundvandskoncentration: Trin 2	C ₂	0,014			1,738	mg/l
Overskridelse af kriteriet Trin 2		14			174	gange

Ved denne visning vil der foretages beregninger for målte data indtastet i **Enkeltstoffer**, ellers kan der indtastes testværdier i de hvide felter for test af andre værdier (som vist oven over for benzen). Testværdier bliver altid anvendt frem for målte værdier i beregningen.

4.3.7 Trin 3 med sorption og nedbrydning

I trin 3 medtages sorption og nedbrydning under transport, og man kan vælge mellem aerobe eller anaerobe forhold. Som nedbrydningskonstanter anvendes stoffernes standardværdier eller brugerværdierne indtastet i fugacitetsmodulet (enkeltstoffer), jf. afsnit 2.3.2.

Ifølge Miljøstyrelsens oprydningsvejledning nr. 7 fra 1998 /6/ beregnes den resulterende forureningskoncentration (C_3 i trin 3) i grundvandet under hensyntagen til dispersion, sorption og nedbrydning i den mættede zone. Når der tages højde for sorption i beregninger er transporttid frem til det teoretiske beregningspunkt langsommere (retarderet transport og retardationsfaktoren er stofafhængig), og forureningsstoffer er udsat for nedbrydning i længere tid. I indtastningsark og i udskriften vises derfor til orientering den resulterende forureningskoncentration i det teoretiske beregningspunkt, såfremt der sker nedbrydning, men ingen retardation, dvs. uden sortion. I eksemplet nedenunder anvendes stoffernes standardværdier under aerobe forhold, dvs. 0,01 dag-1 for benzen.

Beregning: Grundvand								
Grundvandskvalitetskriterie	0,001	0,001	0,001	0,01	mg/l			
Grundvandskoncentration: Trin 1 C1	0,515	352,637	0,000	0,331	mg/l			
Overskridelse af kriteriet Trin 1	515	352637	nej	33	gange			
Grundvandskoncentration: Trin 2 C2	0,120	82,438	0,000	0,077	mg/l			
Overskridelse af kriteriet Trin 2	120	82438	nej	8	gange			
Trin 3 inclusiv sorption og nedbryding Angiv om der er tale om aerobe eller anaerobe nedbrydningsforhold Bemærkning Nedbrydningsforhold • Aerobe forhold • Anaerobe forhold Vis detailoplysninger								
Stofnavn (fra enkeltstoffer)	Benzen	Trichlorethylen	Trichlorethylen	Eksempel-n- butylacetat				
Fordelingskoefficient Log K _D	-1,62	-1,32	-1,32	-1,96				
Anvendt nedbrydningskonstant	0,01	0	0	0,01	dage ⁻¹			
GV-Konc. m. nedbr.: Trin 3	0,003	82,438	0,000	0,002	mg/l			
GV-Konc. m. sorpt. og nedbr.: Trin 3 C ₃	0,002	82,438	0,000	0,002	mg/l			
Grundvandskvalitetskriterie	0,001	0,001	0,001	0,01	mg/l			
Overskridelse af kriteriet Trin 3	2	82438	nej	nej	gange			

Såfremt der i det pågældende eksempel vælges anaerobe forhold, anvendes de brugerværdier for benzen, trichlorethylen (som stof 3) og n-butylacetat, som blev indtastet i kemiske data for enkeltstoffer, for eksempel ingen nedbrydning (O dage $^{-1}$). For stof 2 – også trichlorethylen - er standard nedbrydningskonstant ikke ændret (0,0001 dage $^{-1}$).

Beregning: Grundvand												
Grundvandskvalitetskriterie	0,001	0,001	0,001	0,01	mg/l							
Grundvandskoncentration: Trin 1 C	0,515	352,637	0,000	0,331	mg/l							
Overskridelse af kriteriet Trin 1	515	352637	nej	33	gange							
Grundvandskoncentration: Trin 2 C	0,120	82,438	0,000	0,077	mg/l							
Overskridelse af kriteriet Trin 2	120	82438	nej	8	gange							
Frin 3 inclusiv soration og nedbryding												
Angiv om der er tale om aerobe eller anaerobe nedbrydningsforhold Bemærkning												
Nedbrydningsforhold	Aerobe forhold	Anaerobe forh	old									
		L			Vis detailoplysninger							
Stofnavn (fra enkeltstoffer)	Benzen	Trichlorethylen	Trichlorethylen	Eksempel-n- butylacetat	-							
Fordelingskoefficient Log K	D -1,62	-1,32	-1,32	-1,96								
Anvendt nedbrydningskonstant	0	0,0001	0	0	dage ⁻¹							
GV-Konc. m. nedbr.: Trin 3	0,120	79,482	0,000	0,077	mg/l							
GV-Konc. m. sorpt. og nedbr.: Trin 3 C	0,120	79,036	0,000	0,077	mg/l							
Grundvandskvalitetskriterie	0,001	0,001	0,001	0,01	mg/l							
Overskridelse af kriteriet Trin 3	120	79036	nej	8	gange							

Ved at klikke på **Vis detailoplysninger** kan man aflæse en række parametre, såsom den vertikale forureningsflux (trin 1a), retardationskoefficient og transporttid med sorption til teoretisk beregningspunkt.

Trin 3 inclusiv sorption og nedbryding											
Angiv	om der er tale om aero	be eller anaerobe nedb	rydningsforhold		Bemærkning						
Nedbrydningsforhold	• Aerobe forhold	 Anaerobe forhe 	bld		Skjul detailoplysninger						
Stofnavn (fra enkeltstoffer)	Benzen	Trichlorethylen	Trichlorethylen	Eksempel-n- butylacetat							
Fordelingskoefficient Log K _D	-1,62	-1,32	-1,32	-1,96							
Anvendt nedbrydningskonstant	0,01	0	0	0,01	dage ⁻¹						
GV-Konc. m. nedbr.: Trin 3	0,003	82,438	0,000	0,002	mg/l						
GV-Konc. m. sorpt. og nedbr.: Trin 3 C ₃	0,002	82,438	0,000	0,002	mg/l						
Grundvandskvalitetskriterie	0,001	0,001	0,001	0,01	mg/l						
Overskridelse af kriteriet Trin 3	2	82438	nej	nej	gange						
Anvendt brugerdata?	Ja, se bemærkning	Ja, se bemærkning	Ja, se bemærkning	Ja, se bemærkning							
Log Kow (oktanol/vand) Log Kow	2,13	2,42	2,42	1,81							
Forureningsflux vertikalt (Trin 1a) Jo	56,1	38400,0	0,0	36,0	g/år						
Retardationskoefficient R	1,08	1,15	1,15	1,04							
Forureningshastighed Vs	73	68	68	76	m/år						

Herudover kan der ved at klikke på flueben for én eller flere af de fire stoffer åbnes en tabel og en figur, som viser de beregnede parametre i forskellige afstande fra kilden.

Desuden kan der i det hvide indtastningsfelt indtastes en afstand, f.eks. 20 m, hvorved de beregnede koncentrationer og transporttider vises.

Såfremt der er klikket på flueben vil figuren (men ikke tabellen) fremgår af dokumentationsudskriften.

4.3.8 Navigation, print og nulstilling af værdier

Navigeringen til andre moduler og inden for modulet foregår ved hjælp af knapperne i toppen af arket, som beskrevet i kapitel 2 og illustreret i **Fejl! Henvisningskilde ikke fundet.**.

Ved at klikke på knapperne yderst til højre kan fagmodulerne vælges (**Indeklima**, **Udeluft** eller **Vertikal transport**), og dermed hvilke eventuel anden risikovurderinger der skal udføres.

I toppen af arket kan der navigeres tilbage til Enkeltstoffer, hvor måle- og stofdata kan ændres.

Grundvandskoncentrationen i d Lokaliteten	Enkeltstoffer	Dataark	Indeklima			
Lokalitetsnavn:	Renseri			Overfør værdier	Udskrift	Udeluft
Adresse:	Stationsvej 2	Postnr./By:	3450	Nulstil værdier	Veiledning	Vertikal transport
Lokalitetsnummer:	255-2651	Projektnr:	14.233.00		vojiodining	Vortikar tranoport
Beregning udføres for :	Benzen Trichlo	ethylen	Trichlorethylen	Eksempel-n-	_	

Ved at klikke på **Dataark** vises en oversigt over de anvendte værdier og parametre og evt. mellemregninger.

Nulstil værdier er beskrevet i afsnit 2.5 og betyder, at alle indtastede data, f.eks. valgte aquifertype og indtastede værdier som baggrundskoncentrationer og andre grundvands-koncentrationer, nulstilles. Grundvands- eller porevandskoncentrationer, der er overført fra **Enkeltstoffer**, nulstilles ikke.

Overfør værdier betyder, at der kan overføres oplysninger om aquifermateriale og nettonedbør samt om det forurenede område fra modul for grundvand for benzin- og oliestoffer. Inden dataoverførelsen gennemføres kommer en advarselstekst om at funktionen vil overskrive eventuelt indtastede værdier i regnearket.

Ved at klikke på **Vejledning** hentes en kort vejledning i, hvordan de enkelte data indtastes. For en mere teoretisk baggrund henvises til Miljøstyrelsens vejledning nr. 7, 1998, appendiks 5.6 /6/.

Ved at klikke på **Udskrift** åbnes for et ark som kan udskrives som projektdokumentation enten til den ønskede printer eller som pdf, jf. Figur 4.4.

Ved at klikke på **Udskriv ark** udskrives til brugerens standardprinter. For at vælge andre printer, opsætninger m.v. skal der anvendes Excel's FILE/Print tab.

Grundvand			Udskriv ark
Lokaliteten			
Navn:	Renseri	Lokalitetsnr.: 255-2651	Luk
Adresse:	Stationsvej 2	Postnr/by: 3450	
Matrikel nr.:	Udenbys nr. 12f	Projekt nr.: 588889	
Note	Kontrol af måledata		

Ved at klikke på Luk navigeres tilbage til modulet for Grundvand.

Hvis der er anvendt brugerdata, f.eks. som testværdi, nedbrydningskonstanter, egne stoffer eller egne parametre for aquifermateriale vil der ved **Anvendt brugerdata** på udskrift vises "Ja, se bemærkninger". Det vil kun være bemærkninger, såfremt bruger har indsat nogle kommentar herunder under på **Enkeltstoffer.**

<section-header><form><form><form><form><form></form></form></form></form></form></section-header>						
<form><form><form><form></form></form></form></form>						
<form></form>	Grundvand			Grundvand		
<form></form>	Lokaliteten			Lokaliteten		
<form></form>	Navn: Re	enseri Lokalitetsnr.: 255-2651		Navn:	Renseri	Lokalitetsnr.: 255-2651
<form><form></form></form>	Adresse: St	ationsvej 2 Postnr/by: 3450		Adresse:	Stationsvej 2	Postnr/by: 3450
<form> Note Detail of a diabatic Control of a diabatic Main provide Control of a diabatic Control of a diabatic Main provide Control of a diabatic Control of a diabatic Main provide Control of a diabatic Control of a diabatic Main provide Control of a diabatic Control of a diabatic Main provide Control of a diabatic Control of a diabatic Main provide Control of a diabatic Control of a diabatic Main provide Control of a diabatic Control of a diabatic Main provide Control of a diabatic Control of a diabatic Main provide Control of a diabatic Control of a diabatic</form>	Matrikel nr.: Ud	denbys nr. 12f Projekt nr.: 588889		Matrikel nr.:	Udenbys nr. 12f	Projekt nr.: 588889
<form> Det concept Term of the concept Te</form>	Note Ko	ontrol af måledata		Note	Kontrol af måledata	
<form><pre>demode of the section of the s</pre></form>	Det forurenede område			Bemærkninger om det forurenede område	Der er anvendt nedbørsdata fra Allerød for Lynge	
Import for the requestion of the re	Kommentar			(herunder nettonedbør)		
<form> dia dia dia dia dia dia dia dia dia dia</form>	Beregningstypen	C A: Beregnet koncentration B: Malt koncentration				
<form> Surget de la mande de la magné de la magné</form>	Areal af det forurenede område Bredde af det forurenede område	A 100 m Filterlængde I m B 20 m				
Benckvinger margasingerander Image: provingerander Series for status end in a review marga Image: provingerander Series for status end in a review marga Image: provingerander Series for status end in a review marga Image: provingerander Series for status end in a review marga Image: provingerander Series for status end in a review marga Image: provingerander Series for status end in a review marga Image: provingerander Series for status end in a review marga Image: provingerander Series for status end in a review marga Image: provingerander Series for status end in a review marga Image: provingerander Series for status end in a review marga Image: provingerander Series for status end in a review marga Image: provingerander Series for status end in a review marga Image: provingerander Series for status end in a review marga Image: provingerander Series for status end in a review marga Image: provingerander Series for status end in a review end in	Nettonedbør Kommune/Egn	Standard data Indtastede data (angives med fed) N 300 mm/år Allerød				
Amenic Control Control <td< td=""><td>Det først betydende magasi</td><td>in</td><td></td><td></td><td></td><td></td></td<>	Det først betydende magasi	in				
Auge	Kommentar	Standard data Indtastede data (angives med fed)		Bemærkninger		
minimum	Aguiter Effektiv porgsitet	Sano, mellemkomet		om magasinparametre		
Balmangelogic max Supprise from max Suppr	Porasitet, vandmættet	0.45				
Support at 1000 million No. 1000 million No. 1000 million No. 1000 million Support at 2000 million No. 1000 million No. 1000 million No. 1000 million Support at 2000 million No. 1000 million No. 1000 million No. 1000 million Support at 2000 million No. 1000 million No. 1000 million No. 1000 million No. 1000 million Support at 2000 million No. 1000 million Support at 2000 million No. 1000 million No. 10000 million No. 1000 million	Bulkmassefylde inte	no)b 1,7 1,4575 kg/l				
Type divergending minute Type divergending minute Weiter divergending minute </td <td>% organisk indhold too</td> <td>0,01 0,1</td> <td></td> <td></td> <td></td> <td></td>	% organisk indhold too	0,01 0,1				
High and Mich and Michael And Micha	Tykkelse af GV-magasin dr	1_max 10,0 m				
Produces de autorité No. de construité Suid : No. de construité No	Hydraulisk gradient	0,005 m/m				
Store et server Minimized Store et server	nyurauisk leuningsevne k	5,00E-05 1,00E-04 m/s				
Nummer Dist Stort Stort Millipunkt Dist Stort Stort Dist	Stoffer og stofegenskak	per				
Forumentary Benzem Trichlorethylem Trichlorethylem Univlacetati Beszemetrichinger Mälegunkti Benzem Trichlorethylem Trichlorethylem Univlacetati mg1 Benzem Trichlorethylem Trichlorethylem Univlacetati mg1 Benzem Trichlorethylem Trichlorethylem Trichlorethylem Univlacetati mg1 Benzem Trichlorethylem Trichlorethylem Trichlorethylem University Benzemferinger Benzem Trichlorethylem	Kommentar	Stof 1 Stol 2 Stol 3 Stol 4	-			
Malpunkt: ministan ministan <t< td=""><td>Forureningskomponent</td><td>Bonzon Trichlorathulan Trichlorathulan Eksempel-</td><td>-n-</td><td></td><td></td><td></td></t<>	Forureningskomponent	Bonzon Trichlorathulan Trichlorathulan Eksempel-	-n-			
Maip and it builds <u>jub 10, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0</u>		butylacet	at	Bemærkninger		
Under State Important State Impo	Målepunkt	JP-01 1,0 JP-05 6,5 PL-1 VP-2		om forurening		
Initial standard Initial standard Initial standard Initial standard Bergendividender Initial standard Initial standard Initial standard Bergendividender Initial standard Initial standard Initial standard Bergendividender Initial standard Initial standard Initial standard Initial standard Bergendividender Initial standard Initial standard Initial standard Initial standard Initial standard Bergendividender Initial standard	Mált CV/ konsentration	19-01-2012 28-01-2012 10-05-2012 28-01-201	2 mail			
Degreging: Converted/size Bergeng: Stort 1 200 Montendard Intervent diversity on anvent	Baggrundskoncentration	1,2	mai			
Bergeng: Grundvand Kindersynamedra Stor 1 Stor 2 Stor 3 Stor 4 mg 1 Kindersynamedra Stor 2 Stor 3 Stor 4 mg 1 Kindersynamedra Stor 2 Stor 4 Mg 1 Mg 1 Kindersynamedra Stor 2 Stor 4 Mg 1 Mg 1 Kindersynamedra Stor 2 Stor 4 Mg 1 Mg 1 Kindersynamedra Stor 2 Stor 4 Mg 1 Mg 1 Stor 2 Stor 2 Stor 4 Mg 1 Mg 1 Mg 1 Stor 2 Stor 2 Stor 4 Mg 1 Mg 1 Mg 1 Stor 2 Stor 2 Stor 2 Stor 2 Mg 1 Mg 1 Stor 2 Stor 2 Stor 2 Stor 2 Mg 1 Mg 2 Mg 2 Stor 2 Stor 2 Stor 2 Stor 2 Stor 2 Mg 2 Mg 2 Stor 2 Stor 2 Stor 2 Stor 2 Mg	baggrondskoncontrason		- Ingin			
Advingendar Normalization Normalination Normalization Normalizat	Beregning: Grundvand		_			
Andersynnel Ander Ander Ander Dersonnel Ander Ander Ander Dersonnel Market Ander	Kommentar	Stof 1 Stof 2 Stof 3 Stof 4				
Variation reverting a ventilitation reverting to ventilitation reverting to ventilitation reverting to ventilitation reverting to reverting the ventilitation reverting to reverting to reverting the ventility of th	Recepted anvendul beregning	1,6702 1.280 0,0013 1,2	- mga			
Teststeard arwend: Imp	Værdien fra vertikaltransport anven	dt Nei Nei Nei	-			
Gundwardskrifterisherierie Gundwardskrifterisherierierie Gundwardskrifterisherierierie Gundwardskrifterisherierierierie Gundwardskrifterisherierierierie Gundwardskrifterisherierierierierierie Gundwardskrifterisherierierierierierierierierierierierierie	Testværdi anvendt	nej nej nej nej	-			
Gundwardscheringter 0.02 350 0.060 0.033 Gundwardscherintigter 110 0.02 0.000 0.033 Gundwardscherintigter 100 0.01 0.020 0.000 0.000 Versichtigte af Intervient The 1 0.01 0.020 0.000 0.000 0.000 Versichtigte af Intervient The 2 0.000	Grundvandskvalitetskriterie	0,001 0,001 0,001 0,	01 mg/l			
Overside al kineter Tin 1 1 333.000 1 1 333.000 1	Grundvandskoncentration: Trin 1	0.52 350 3,60E-04 0,33	mg/l	Bemærkninger		
Verund metanetic framework	Overskridelse af kriteriet Trin 1	515 353.000 nej 33		om beregning, f.eks. om		
This 3 inklusive sorption og nedbydningskorts. Nord in a div dyningskorts. 1. orden nedbydningskorts. 1. orden nedbydningskorts. 1. orden nedbydningskorts. (C/Avac. med sorp. in destydningskorts. 0. orden in dettydningskorts. 0. orden in det	Overskridelse af kriteriet Trin 2	0,12 82,0 8,40E-05 0,077 120 82,400 nei 8		aerobe eller anaerobe forhold		
Im 3 initialize sorpion og i reduryong Im 4 initialize sorpion og i reduryong Handbrydningskonst, ander I orden nedbrydningskonst, ander 10 riden nedbrydningskonst, ander 00 koji 00 koji 00 koji 00 koji 00 koji 10 riden nedbrydningskonst, ander 11 riden nedbrydningskonst, ander 12 koji	Tala O latitudes a small	adhardlan	-			
In ording and hydrogenerating devine the second of the	Nedbrudningeforhold:	E Aerobe forhold C Anaerobe forhold				
- urumer stourydringskonsta. servor - urumer stourydringskonsta. servor Korden endedyddirfyskonsta. servor Korden endedyddirfyskonsta. servor Korden endedyddirfyskonsta. Korden endedyddirfyskonsta. Korsen eddirfyskonsta. Korsen eddirfyskonsta	f enders and enderseland		and deep 1			
Ion (Kay)	 ordens nedbrydningskonst, aerot ordens nedbrydningskonst, aerot 	roh 0.001 0 10E-04 10E-04 0	0 dage ⁻¹			
(git/kace, med kun dedhyd: find.) 0.0031 82.0 8.46E-05 0.0021 mgl Overskriddes al Vitikeir Tin 3 0.0031 82.0 0.0018 mgl Overskriddes al Vitikeir Tin 3 0.0024 82.0 0.0018 mgl Overskriddes al Vitikeir Tin 3 0.0024 82.0 0.0018 mgl Anvendt brugerdata? 82.000 ngl ngl Nedhydringskonstanter for banzen og tichhoethylen i grundvard under anærebe forhold er at 10. Berogeningerne udfort af Nerschulter Nadbrydningskonstanter for banzen og tichhoethylen i grundvard under anærebe forhold er at 10. Nedbrydningskonstanter for banzen og tichhoethylen i grundvard under anærebe forhold er at 10. Berogeningerne udfort af Nerschulter Konstnieter Godiend Nedbrydningskonstanter for banzen og tichhoethylen i grundvard under anærebe forhold er at 10. Diab Underskift Visit Kemiske data Visit Kemiske data Nedbrydningskonstanter for banzen og tichhoethylen i grundvard under anærebe forhold er at 10. Diab Underskift Visit Kemiske data grund and der er foretaget ændringer at beregningstomter Nedbrydningskonstanter for banzen og tichhoethylen i grundvard under anærebe forhold er at 10. Diab Underskift Step 1 af 3 Udskrevet den 03-09-201309-51 Nedbrydningskonstanter for banzen og tichhoethylen i grundvard under	log kow	2.13 2.42 2.42	1.81			
CW-kore, med sopt, op indbyct, tim 3 ^{Object}	(GV-konc. med kun nedbryd.: Trin 3)	0,0031 82,0 8,40E-05 0.002	mg/l		L	
Overskridele af kriterier Tin 3 Anvendt brugerdata? ¹ / ₂ 2 42.400 nej ¹ / ₂ ne bemakring ¹ / ₂ is a bemakring ¹	GV-konc. med sorpt. og nedbryd: Trin 3	a 0,0024 82,0 8,40E-05 0,0018	mg/l	Bemærkninger	Der er anvendt værdier fra Verschueren 1996 for n-l	sutylacetat.
Anvend torugerdata? La se bemarkning La	Overskridelse af kriteriet Trin 3	2 82.400 nej nej		om fysisk/kemiske data	Nedbrydningskonstanter for benzen og trichlorethyle	n i grundvand under anaerobe
Bereggningeme udfort af Finanam <u>JAF</u> Bereggningeme kontrolleret /godkendt af Kontrolleret /godkendt af Kontrolleret /godkendt af Kontrolleret /godkendt af Godeend	Anvengt brugerdata?	Ja, se bemærkning Ja, se bemærkning Ja, se bemærkning Ja, se bemærk	ining		forhold er sat til 0.	a under anroha anomika faik iti
Beregningerne udfort af Finanzahn Nim/Staller Dafo Understrütter Beregningerne kontrolleret /godkendt af <u>JAF</u> Godiend Beregningerne kontrolleret /godkendt af Godiend Beregningerne kontrolleret /godkendt af Beregningerne kontrolleret /godkendt af Ber					reading an ingskonstanter for benzen i umættede zon reat til 0.001.	e under aerobe anaerobe tornold er
Firmation NIRAS Kontrolieres Godenation Godenatio Godenation Godenation Godenation Goden	Beregningerne udført af	Beregningerne kontrolleret /go	dkendt af			
Nam/Initialer JAF Godient	Firmanavn N	IRAS Kontrolleret	_			
Dato Underskrift Liber of 10 - 00 - 2013 09:51 Side 1 af 3 Udskrevet den 03:09-2013 09:51 Side 2 af 3	Navn/initialer JA	AF Godkendt	_			
Beregningene er utlert med é overlor angine data og uden at der er foretaget ændringer af beregningsformler Júskvevet den 03-09-201309-51 Side 1 af 3 Udskvevet den 03-09-201309-51 Side 2 af 3	Dato/Underskrift					
Jestingeningening en owenin network of viewent and big ovening and beingeningen and versigningenomine Jestingenet den 03-09-201309-51 Side 1 al 3 Udskrevet den 03-09-201309-51 Side 2 al 3	Bereggiogene er udlert med de overfo	ar anniune data on urlen at der er forstanet medringer af beregningeformler			-	
Jdskrevet den 03-09-201309:51 Side 1 af 3 Udskrevet den 03-09-201309:51 Side 2 af 3	nereðumðettie et norett men de overtio	n anifikina nara oli ngali ar gal al lotaradar sulgungar ar panggungstormiet.				
	Udskrevet den 03-09-201309:51		Side 1 af 3	Udskrevet den 03-09-201309:51		Side 2

FIGUR 4.4

EKSEMPEL PÅ UDSKRIFT FOR GRUNDVANDSBEREGNING FOR ENKELTSTOFFER (SIDE 3 MED FIGURER ER IKKE VIST).

4.4 Indeklima - Enkeltstoffer

Efter indtastning af lokalitetsdata på opstartsiden og forureningsdata i fugacitetsmodulet, kan der foretages en beregning af konsekvenser for indeklimaet, jf. appendiks 5.3 i MST´s oprydningsvejledning fra 1998 /6/, med opdateringer fra 2011.

Indledningsvis skal man vælge mellem to beregningssituationer:

- beregningerne for bygninger med et betondæk (enten kælderdæk eller terrændæk)
- eller beregninger for bygninger med krybekælder

JAGG modellen kan ikke anvendes til andre typer af gulvkonstruktioner.

4.4.1 Beregninger for bygninger med et betondæk

4.4.1.1 Indtastning af jordlag

Den umættede zone som forureningen skal afdampe gennem skal indledningsvis beskrives. Den umættede zone medtager både de jordlag som findes mellem forureningen og betondækket, et eventuelt kapillarbrydende lag og en eventuel membran.

Der kan indtastes oplysninger for en membran og et kapilarbrydende lag og op til 4 forskellige jordlag.

For hvert lag vælges typen som standardtyper ved at klikke på knappen [Membran], [Kapillarbrydende lag] eller [Jordtype]. Alternativt kan der vælges lag fra [Egen Liste], eller der kan manuelt indtastes værdier i de hvide felter.

Anvendelse af standardliste, vedligeholdelse af egen liste, bemærkningsfelt og nulstilling er beskrevet i afsnit 2.

Beregning af indeklima	akoncentrat	tion					Eal	kaltateffar	Dataark	.	Cruptup		
i bygning med terrænd	læk							Keitstoller	Dataan	<u> </u>	Grundvand		
Lokalitetsnavn:	oXford Rens						Over	lør værdier	Udskrift	t	Udeluft		
Adresse:	Peter Libsve	ej		Postnr./By:	2010 Rødov	re	Nulstil værdier		Veilednir	na	Vertikal transport		
Lokalitetsnummer:	122-00502X			Projektnr:	A07412-A-0)1	Tuis		vejiedini	<u>'9</u>	Vertikar transport		
	For krybek	ælder: beny	t knap til hø	jre			Кгу	bekælder					
Beregning udføres for :	Tetrachlo	orethylen	Trichlor	ethylen	cis-1,2-Dic	hlorethylen							
Influenszone og membran Indtast data for evt. membran og kapilarbrydende lag og for jordlag mellem prøvetagningspunktet Bernærkning og bygningen.													
Jord	ltype/Membran	Jordlag Dybde fra m u.gulv	Jordlag Dybde til m u.gulv	Lag- tykkelse (m)	Poreluft- volumen VL	Vand- indhold V _V	Samlet porøsitet ≈=VL+V _V	Volumen af jordskellet V _J	Materiale- konstant				
Membran D	ampspærre			0.15					7E-5-8,8E-5				
Egen liste				-	mm				8,8E-05				
Kabillarbrydende lag					0.0 - 0.45	0.05 - 0.35							
Enen liste	Sand				0,4	0,05	0,45	0,55	0,2249				
				0,2			I	I					
Jordparametre													
Jordtype	Ler	0,20015			0,00 - 0,25	0,20 - 0,40	0.4	0.6	0.0079		Bemærkning		
Egen liste			4	3,79985	0,1	- 0,0	-,-	-,-					
Jordtype	Sand				0,0 - 0,45	0,05 - 0,35	0,45	0,55	0,1095				
Egen liste		4	4,5	0,5									
Jordtype													
Egen liste	_			0			0	1	0,0000				
lordtype				-	<u> </u>								
- Sonalype							0	1	0,0000				
Egen liste	_			0									
		Samlede	lagtykkelse	4,5	m	Sam	let materialel	konstant K _W	0,0020				

For membran og det kapillarbrydende lag indtastes tykkelsen i henholdsvis mm og meter. For jordlagene indtastes dybden som jordlaget går til. Dybden angives i meter under gulvet. For det øverste jordlag er det muligt at indtaste dybden målt fra overkanten af jordlaget. Tykkelsen af de individuelle lag vises automatisk, som f.eks. vist ovenover, hvor lerlaget fortsætter til 4,0 m u.gulv under et 0,2 m lag kapilarbrydende lag og en dampspærre. Tykkelsen af lerlaget er 3,8 m herunder er et sandlag med en tykkelse på 0,5 m ned til målepunktet. Den samlede lagtykkelse er 4,5 m. Såfremt der ikke vælges en jordtype eller der indtastes en fejl ved dybdeangivelse ses fejlmeddelelser.

Influenszone og n	nfluenszone og membran Indtast data for evt. membran og kapilarbrydende lag og for jordlag mellem prøvetagningspunktet og bygningen.											
	Jordtype/Membran	Jordlag Dybde fra m u.gulv	Jordlag Dybde til m u.gulv	Lag- tykkelse (m)	Poreluft- volumen VL	Vand- indhold V _V	Samlet porøsitet ≈=V _L +V _V	Volumen afjordskellet V _J	Materiale- konstant			
Membran Egen liste	Dampspærre			0,15	mm				7E-5-88E-5 8,8E-05			
Kabillarbrydende lag Egen liste	0			0,2	0	0	0	1	0,0000	Fejll Typeangivelse mangle		
Jordparametre												
Jordtype Egen liste	Ler	0,20015	4	3,79985	0,00 - 0,25 0,1	0,20 - 0,40 0,3	0,4	0,6	0,0079	Bemærkning		
Jordtype Egen liste			3,5	-0,5			0	1	0,0000	FEJL! Jordtype mangler		
Jordtype Egen liste				0			0	1	0,0000			
Jordtype Egen liste				0			0	1	0,0000			
		Samlede	lagtykkelse	FEJL‼ Der 3,5	er jordlag med m	d negativ højd Saml	e et materiale	konstant K _W	0,0021			

Bemærkningsfelterne kan anvendes til en beskrivelse af de valgte inputdata.

Bemærk

At det kapillarbrydende lag regnes som mere tørt end jordlagene. Værdierne for poreluftvolumen er derfor højere og vandindhold lavere for det kapillarbrydende lag end for jordlagene.

Jævnfør /2/ er formlen til beregning af materialekonstanten i jord ændret i forhold til i MST´s Oprydningsvejledning fra 1998 /6/ (ligning 18):

fra	$N = V_L^{3,33} / (V_L + V_V)^2$
til	$N = V_L^{2,5} / (V_L + V_V)$

hvilket giver en mindre afvigelse af de beregnede indeklimakoncentrationer i forhold til tidligere udgaver af JAGG.

4.4.1.2 Indtastning af oplysninger om Bygningsdata

Terrændæk

Typen af terrændæk indtastes, enten ved at vælge en standardtype eller ved at vælge et terrændæk fra [Egen Liste]. Desuden indtastes betondækkets tykkelse.

Bygningsdata	Vælg type af terrændæk, eller indtast egen data	Bemærkning
Terrændæk	Betontype Egen liste	Vis detailoplysninger
Type af terrændæk	Uarmeret beton (beton 10)	
Betontværsnit	h _b 80 mm	

Klik på knappen [Vis detailoplysninger] giver mulighed for at se og redigere i oplysningerne om terrændækket.

Bygningsdata		Bemærkning							
Terrændæk		Betontype	Egen liste						Skjul detailoplysninger
Type af terrændæk	L	Jarmeret beto	n (beton 10)						
Betontværsnit	hb	80		mm					
Relativ luftfugtighed	RF	60		%	Armeringsdiameter	da		mm	Ind_da
Vand/cement-tallet	v/c	0,82			Armeringskonstant	k			Ind_k
Cementindhold	СМ	220		kg/m ³	Afstand mellem armeringsjer	n ∆b		mm	Ind_Db
Svindtid	t₅	7300		døgn	Dynamisk viskositet af luft	μ	1,80E-05	kg/(m * s)	Ind_my
Elasticitetskoeff. Beton	E₀	20000		MPa	Elasticitetskoeff. Stål	Es	210.000	MPa	Ind_Es
Materialekonst. for beton	Nb	0,002							

Bygningsdata

Bygningsdata er opdelt i en "indtastede bygningsdata" og "beregnede bygningsdata. Under bygningsdata indtastes oplysninger om det eller de rum som risikovurderingen foretages i forhold til, herunder anvendelse højde, brede og længde samt luftskifte og trykforskel over terrændækket.

Under beregnede data gives de beregnede oplysninger om revnedannelse i terrændækket og volumenstrømmen gennem terrændækket. Såfremt disse parametre er målt i felten, er det muligt at indføre dem i beregningerne.

Bygningsdata	Indtast bygnings data				Beregnede bygningsdata	Anvend ber eller indtast	regnede byg t målte data	Bemærkning		
Rumtyne/anvendelse		Stue on	Kakken							
Lefte beide		l otto og			Durauidde		La conoca	_		
Lousnøjde	Lh		2,8	m	Revnevidde	w	0,592933		mm	
Luftskifte	Ls	8,3E-05		s '	Gnmsn. revneafstand	l _w	#VALUE!		mm	
Gulvbredde	I _b		10	m	Total revnelængde	I_{tot}	28		m	
Gulvlængde	- h		4	m	Vol. strøm gennem beton	q _b	0,001689		m³/s	
Trykforskel over betondæk	ΔP	5		Ра	Vol. strøm gennem beton pr. m²	Qb	4,22E-05		m³/(s · m²)	

Bemærkningsfeltet kan anvendes til en beskrivelse af de valgte inputdata.

4.4.2 Beregninger for bygninger med krybekælder

4.4.2.1 Indtastning af jordlag

Den umættede zone, som forureningen skal afdampe gennem, skal indledningsvis beskrives. Den umættede zone medtager både de jordlag, som findes mellem forureningen og gulvet i krybekælderen, et eventuelt gulv i krybekælderen og en eventuel membran.

Der kan indtastes oplysninger for en membran og et kapillarbrydende lag og op til 4 forskellige jordlag.

For hvert lag vælges typen som standardtyper ved at klikke på knappen [Betontype],]Membrantype], eller[Jordtype]. Alternativt kan der vælges lag fra [Egen Liste], eller der kan manuelt indtastes værdier i de hvide felter.

Anvendelse af standardliste, vedligeholdelse af egen liste, bemærkningsfelt og nulstilling er beskrevet i afsnit 2.

Beregning af inde	eklimakon /bekælder	centra	tion	En	keltstoffer	Dataark	Grundvand						
Lokalitetsnavn:	oXf	ord Rens	5				_	Over	før værdier	Udskrift	Udeluft		
Adresse:	Pet	er Libsv	ej		Postnr./By:	2010 Rødov	re	Nule	til værdior	Voilodning	Vortikal transport		
Lokalitetsnummer:	okalitetsnummer: 122-00502X				Projektnr:	A07412-A-0	1	Wuis	sui vaeruiei	vejleuning	ventikai transport		
For terrændæk/kæld			ndæk/kælde	r: benyt knaj	o til højre			Te	rrændæk				
Beregning udføres for : Tetrachlorethylen			orethylen	Trichlor	ethylen	cis-1,2-Dic	nlorethylen						
Ventilleret kryk	oekælde	r											
Jordparametre og gulv i krybekælderen Indtast data om krybekælderens gulv og om jordlag													
	Jordtype/Me	embran	Jordlag Dybde fra	Jordlag Dybde til	Lag- tykkelse	Poreluft- volumen	Vand- indhold	Samlet porøsitet	Volumen af jordskellet	Materiale- konstant			
			m u.gulv	m u.gulv	(m)	VL	Vv	≈=VL+VV	VJ				
Betontype	Klapla	ag			80	mm				0,002			
Egen liste													
Membrantype	Dampsp	ærre			0,15	mm				7E-5-8,8E-5 8.80E-05			
Egen liste													
Jordtype	Sand	ł				0,0 - 0,45	0,05 - 0,35						
Egen liste			0,08015	2	1,91985			0,45	0,55	0,1095			
Jordtype	Ler					0,00 - 0,25	0,20 - 0,40						
Egen liste			2	4,5	2,5		0,0	0,4	0,6	0,0079			
Jordtype													
Egen liste					0			0	1	0,0000			
Jordtype													
Egen liste					0			0	1	0,0000			
			Samled	e lagtykkelse	4,5	m for jordlag	Sam	let materiale	konstant K _W	0,002663			

For beton- og membrantype indtastes tykkelsen i mm. For jordlagene indtastes dybden som jordlaget går til. Dybden angives i meter under gulvet. Tykkelsen af de individuelle lag vises automatisk, som f.eks. vist ovenover, hvor sandlaget fortsætter til 2,0 m u. gulv under et klaplag og en dampspærre. Tykkelsen af sandlaget er 1,9 m, herunder er et lerlag med en tykkelse på 2,5 m ned til målepunktet. Den samlede lagtykkelse er 4,5 m.

Såfremt der ikke vælges en jordtype eller der indtastes en fejl ved dybdeangivelse ses fejlmeddelelser.

Bemærkningsfelterne kan anvendes til en beskrivelse af de valgte inputdata.

4.4.2.2 Indtastning af oplysninger om Bygningsdata

Bygningsdata

Bygningsdata indeholder oplysninger om det/de rum der er over krybekælderen, og dermed om det eller de rum som risikovurderingen foretages i forhold til, herunder anvendelse højde, brede og længde samt luftskifte.

Bygningsdata		Indtast data o	m etag	n over krybekælderen	
					Bemærkning
Rumtype/anvendelse		Stue og Køl	kken		
Loftshøjde	Lh		3	m	
Luftskifte	Ls	0,000083		S '	
Gulvbredde	I _b		9	m	
Gulvlængde	- Ij		5	m	

Bemærkningsfeltet kan anvendes til en beskrivelse af de valgte inputdata.

Krybekælder

Krybekælder indeholder oplysninger om krybekælderen herunder etageadskillelsen mellem krybekælder og opholdsrum, højde, brede og længde samt eventuelt luftskifte. Brede og længde sættes automatisk til de samme værdier som under bygningsdata. Værdierne kan dog ændres manuelt.

Luftskiftet for krybekælderen beregnes så snart der er indtastet data for højde, brede og længde af krybekælderen, ligesom volumenstrømmen gennem etageadskillelsen mellem krybekælder og opholdsrum beregnes. Der beregnes ligeledes en reduktionsfaktor, som er den samme som for etageadskillelsen, medmindre der indtastes værdier for luftskifte og volumenstrøm gennem etageadskillelsen.

Såfremt de indtastede data giver luftstrømme gennem etageadskillelsen, som er større end de luftstrømme som enten er i krybekælderen eller i opholdsrummene, kommer der advarsler.

Data for krybekælder		Indtast dat	ta om kryb	ekælde	ren	Bemærkning
Etageadskillelse		Trægu	lv med	1		
Reduktionsfaktoren	Rkr	1				
Loftshøjde	L _h		0,5	m		
Gulvbredde	lь	9		m		
Gulvlængde	- h	5		m		
Luftskifte	Ls	0,000498		s		
Vol. strøm gennem loft i						
krybekælderen	q _{gv}	0,000249	0,1	m³/s	FEJL: Luftstrømmen igennem etageadskillelsen er større end luftskiftet i krybekælderen	
Reduktionsfaktor beregn.	Rkr	0,00249			FEJL: Luftstrømmen igennem etageadskillelsen er større end luftudskiftet i beboelsen	

4.4.3 Samlet for begge beregninger

4.4.3.1 Forureningsdata

Forureningsdata, dvs. poreluftkoncentrationer, er overført fra fugacitetsmodulet (Enkeltstoffer)til indeklimamodulet.

I dataark for enkeltstoffer defineres for hvert målepunkt, hvilke endelige koncentrationer, der anvendes i de efterfølgende beregninger. Såfremt der er målt en poreluftkoncentration, anvendes denne, ellers anvendes en poreluftkoncentration beregnet ift. en vandprøve, eller som sidste mulighed en poreluftkoncentration beregnet ift. en jordprøve. I eksemplet ovenover anvendes en beregnet koncentration på 160 mg/m³ ud fra en grundvandsprøve B2 med et indhold af PCE på 0,2 mg/l, samt målte koncentrationer fra poreluftpunkt P14 på henholdsvis 22 mg PCE/m³ og 125 mg DCE/m³. Regnearket viser ofte værdier med flere decimaler og brugeren bør afrunde til et antal betydende cifre.

Forurening	Data for forureningen er overført fra fugacitetsmodulet Indtast baggrundskoncentration										
Stofnavn		Tetrachlorethylen	Tetrachlorethylen	cis-1,2-Dichlorethylen							
Målepunkt Dato		B2 15-02-2008	P14 06-11-2010	P14 06-11-2010							
Poreluftskoncentration	CL	160,2781571	22	125		mg/m³					
Test af andre værdier			105			mg/m³					
Baggrundskoncentration	C ₀					mg/m³					
Diffusionskoefficient i luft	DL	6,38E-06	6,38E-06	8,35E-06	0,00E+00	m²/s					
Beregning: Indeklir	na										
Stoffluxgennem beton	J	2,12E-06	1,39E-06	2,16E-06 1	#VALUE!	mg/(s· m²)					
Poreluftkonc. under gulv	Cp	0,050088809	0,032813735	0,051039144	#VALUE!	mg/m³					
Diffusivt bidrag til indeluft	C _{di}	2,81221E-05	1,84231E-05	3,74712E-05	#VALUE!	mg/m³					
Totalt bidrag til indeluft	Ci	0,009128212	0,005979993	0,009310217	#VALUE!	mg/m³					
Afdampningskriterie		0,006	0,006	0,4	0	mg/m³	Bemærkning				
Overskridelse af kriteriet		1,521368608	Nej	Nej	Intet kriterie	gange					
Anvendt Brugerdata		Nej	Nej	Ja, se bemærkning	Nej						

Baggrundskoncentration og test af andre værdier

Der er mulighed for at indtaste en baggrundskoncentration (f.eks. 55 mg/m³) eller afprøve andre poreluftkoncentrationer f.eks. 105 mg/m³ (markeret med blåt i figuren ovenfor), i hvilket tilfælde der med rødt vises, at brugerdata er anvendt, og brugeren bør indtaste en bemærkning i bemærkningsfeltet.

4.4.3.2 Beregning af indeluftbidrag for bygninger med terrændæk

Det beregnede bidrag til indeluften vises, så snart der er indtastet data for jordlagene, idet koncentrationerne automatisk hentes fra fugacitetsmodulet.

Hvis der er foretaget målinger af stoffluxen gennem betonen f.eks. med foliemetoden, er der mulighed for at medtage resultatet af fluxmålingerne i beregningerne med terrændæk (markeret med rødt i figuren ovenfor).

4.4.3.3 Beregning af bidrag til krybekælder og indeklima

Beregning udføres for :	[Tetrachlorethylen	Tetrachlorethylen	cis-1,2-Dichlorethylen		
Beregning: Indek	lima					
Luft konc. i krybekælder	C _{k-bereg} C _{k-målt}	0,071390104	0,009799104	0,072820512	#VALUE!	mg/m³
Totalt bidrag til indeluft	Ci	0,071390104	0,009799104	0,072820512	#VALUE!	mg/m³
Afdampningskriterie	[0,006	0,006	0,4	0	mg/m³
Overskridelse af kriteriet	[11,89835065	1,633183954	Nej	Intet kriterie	gange
Anvendt Brugerdata	ſ	Nej	Nej	Nej	Nej	

Hvis der er foretaget målinger af luftkoncentrationen i krybekælderen, er der mulighed for at indtaste og foretage beregningerne med de målte koncentrationer.

4.4.4 Navigation, print og nulstilling af værdier

Navigeringen til andre moduler og inden for modulet foregår ved hjælp af knapperne i toppen af arket, som beskrevet i kapitel 2 og illustreret i

BEMÆRK AT BRUGERENS NAVIGERING I SYSTEMET IKKE NØDVENDIGVIS ER SAMMENFALDENDE MED DATAFLOWET SOM VIST I FIGUR 1.4.

Beregning af indeklimakoncentration i bygning med terrændæk					Dataark	Grundvand
Lokalitetsnavn:	oKfor	rd rens		Overfør værdier	Udskrift	Udeluft
Adresse:	Peter Libsvej	Postnr./By:	2610/Rødovre	Nulstil værdier	Veiledning	Vertikal transport
Lokalitetsnummer:	122-00502X	Projektnr:	A07412-A.01			
	For krybekælder: benyt knap til h	øjre		Krybekælder		

Ved at klikke på knapperne yderst til højre kan fagmodulerne vælges (**Grundvand**, **Udeluft** eller **Vertikal transport**) og dermed hvilke andre risikovurderinger, der eventuelt skal udføres.

I toppen af arket kan der navigeres tilbage til **Enkeltstoffer**, hvor måle- og stofdata kan ændres.

Ved at klikke på **Dataark** vises en oversigt over de anvendte værdier og parametre og evt. mellemregninger.

Nulstil værdier er beskrevet i afsnit 2.5 og betyder, at alle indtastede data f.eks. valgte jordtype og indtastede værdier som baggrundskoncentrationer og "Test af andre værdier" nulstilles. Poreluftskoncentrationer der overført fra **Enkeltstoffer** nulstilles ikke.

Overfør værdier betyder, at der kan overføres oplysninger om jordtyper, kapilarbrydende lag bygningsdata m.v. fra modul for grundvand for benzin- og oliestoffer. Inden dataoverførelsen

gennemføres kommer en advarselstekst om at funktionen vil overskrive eventuelt indtastede værdier i regnearket.

Ved at klikke på **Vejledning** hentes en kort vejledning i, hvordan de enkelte data indtastes. For en mere teoretisk baggrund henvises til Miljøstyrelsens vejledning nr. 7, 1998, appendiks 5.6 /6/ og Miljørapport Opgradering af JAGG indeklimamodul /2/.

FIGUR 4.5.

EKSEMPEL PÅ UDSKRIFT FOR INDEKLIMA BEREGNING FOR BYGNINGER MED TERRÆNDÆK. EKSEMPLET VISER SIDE 1 OG 3, MENS SIDE 2 MED BEMÆRKNINGER IKKE ER VIST.

DET RØDE FELT UNDER PUNKTET JORDPARAMETRE VISER, AT DER ER INDTASTET EN TYKKELSE FOR DET KAPILARBRYDENDELAG, MEN AT JORDTYPEN IKKE ER VALGT.

DER VISES EN FEJLMEDDELELSE FOR, AT DER ER ET JORDLAG MED NEGATIV HØJDE.

DET RØDE FELT MED "JA" VISER, AT DER FOR STOF NUMMER TO REGNES MED EN INDTASTET PRØVEVÆRDI OG IKKE DEN INDLÆSTE KONCENTRATION.

I EKSEMPLET ER DER FLUEBENET UDFOR KOMMENTARER TIL BYGNINGSDATA . FLUEBEN SÆTTES AUTOMATISK HVIS DER ER INDTASTET BEMÆRKNINGER I DET PÅGÆLDENDE BEMÆRKNINGSFELT.

Der kan generes en udskrift af beregningen til projektdokumentation ved at klikke på Udskrift.

Der åbnes et nyt faneblad, der viser udskriftssiden. Ved at klikke på knappen Udskriv Ark sendes en udskrift til den printer som er valgt som foretrukne eller aktuelle printer. Ved at klikke på Luk navigeres tilbage til modulet for Indeklima.

FIGUR 4.5

EKSEMPEL PÅ UDSKRIFT FOR INDEKLIMABEREGNING FOR BYGNINGER MED TERRÆNDÆK. SIDE 1 OG SIDE 2 MENS SIDE 3 IKKE ER VIST.

DET RØDE FELT UNDER PUNKTET JORDPARAMETRE VISER, AT DER ER INDTASTET EN TYKKELSE FOR DET JORDLAG2, MEN AT JORDTYPEN IKKE ER VALGT.

4.5 Udeluft - Enkeltstoffer

Efter indtastning af lokalitetsdata på opstartsiden og forureningsdata i fugacitetsmodulet, kan der foretages en beregning af konsekvenser for udeluft, jf. ligningerne 15 og 17-22 i appendiks 5.3 i MST´s Oprydningsvejledning fra 1998 /6/.

Ligning 18 er dog, jf. /4/, rettet fra

$$N = V_L^{3,33} / (V_L + V_V)^2$$

 $N = V_{L^{2,5}} / (V_{L} + V_{V})$

til

4.5.1 Indtastning af jordlag

Der kan indtastes op til 4 forskellige jordlag.

Beregnin udeluftko	g af incentrationen								Enkeltstoffer		Dataark	Grundvand
Lokalitetsnav	m:			Rer	iseri			C)verfør værdi	er l	Jdskrift	Indeklima
Adresse:		Stationsvej			Postnr./By:	34	50		Nulstil værdie		eiledning	Vertikal transport
Lokalitetsnur	nmer:	2553-56			Projektnr:	14.2	33.00				ofreedoning	
Beregning up	dføres for :	Ben	izen	m-X	ylen	Trichlor	rethylen	n-buty	lacetat			
Jordpara	metre	Indtast dat	ta om jordla	g mellem pr	øvetagnings	spunktet og	jordoverflad	len		Bema	erkning	
		Jordtype	Jordlag Dybde fra m u.t	Jordlag Dybde til m u.t	Lag- tykkelse (m)	Poreluft- volumen VL	Vand- indhold Vv	Samlet porøsitet ε=VL+V∨	Volumen afjordskellet VJ	Materiale- konstant N		
	Jordtype	Sandmuld		0.2	0.2	0,05 - 0,30	0,15-0,35	0.45	0.77	0.0070		
	Egen liste			0,2	0,2	0,1	0,00	0,45	0,00	0,0070		
	Jordtype	Sand	0.2	11	1	0,0 - 0,45	0,05 - 0,35	0.45	0.55	0 1005		
	Egen liste		0,2	1,2	· ·	0,0	0,15	0,45	0,00	0,1095		
	Jordtype		1.2						1	0.0000		
	Egen liste		1,2		Ŭ					0,000		
	Jordtype								1	0.0000		
	Egen liste		0					0		0,0000		
			Samlede	lagtykkelse	1,2		Samlede	ækvivalente j	ordtykkelse	0,0266		

For hvert lag vælges jordtype fra standardlisten eller egen liste. Anvendelse af standardliste, vedligeholdelse af egen liste, bemærkningsfelt og nulstilling er beskrevet i afsnit 2.3.1.

Det øverste jordlag ved jordoverfladen vælges og dybden til det næste lag indtastes. Herefter indtastes jordlag og dybden til bunden af hvert af de underliggende lag. Tykkelsen af de individuelle lag vises automatisk, som f.eks. vist ovenover, hvor sandlaget fortsætter til 1,2 m u.t. under et 0,2 m lag af sandmuld, hvor tykkelsen af sandlaget er 1 m og den samlede lagtykkelse 1,2 m.

Såfremt der ikke vælges en jordtype eller der indtastes en fejl ved dybdeangivelse ses fejlmeddelelser.

Jordparametre	Indtast da	ta om jordlag	j mellem pr	øvetagnings	spunktet og	ordoverflade	en		Bemærkning	
	Jordtype	Jordlag Dybde fra	Jordlag Dybde til	Lag- tykkelse	Poreluft- volumen	Vand- indhold	Samlet porøsitet	Volumen afjordskellet	Materiale- konstant	
		m u.t	m u.t	(m)		<u></u>	s=VL+VV		N	
Jordtype	Sand		2	2	0,0 - 0,45	0,05 - 0,35 0,15	0,45	0,55	0,1095	
Egen liste										
Jordtype		2	1.8	-0.2	<u> </u>		0	0	0,0000	Feil! Jordtype mangler
Egen liste										, ,, ,, ,,
Jordtype		1,8		0	—		0	0	0,0000	
Egen liste										
Jordtype		0		0	<u> </u>		0	0	0.0000	
Egen liste										
				FEJL!! Der	er jordlag n	ed negativ l	nøjde			
		Samlede	lagtykkelse	1,8		Samlede :	ækvivalente j	jordtykkelse	0,0554	

4.5.2 Indtastning af oplysninger om det forurenede område

Længden af det forurenede område indtastes, og opblandingshøjden justeres herefter i henhold til et standardopblandingsforhold på 0,08, jf. MST´s Oprydningsvejledning /6/. Der kan også indtastes en opblandingshøjde eller længde af det forurenede område, for eksempel 1,6 m (indåndingshøjde) og 50 m (længde), hvilket gives et højere udeluftbidrag, idet h/l er mindre end 0,08. Opblandingshøjden er højden, hvor der kan forventes fuld opblanding af forurening i atmosfæren for enden af det forurenede område nedstrøms vindretningen.

Det forurenede område	Indtast data om det forurenede område, eller	Bemærkning			
Længde af det forurenede område	1	Standard 100	Brugerdata 50	Anvendt i beregning 50 m	
Opblandingshøjde	h	8	1,6	1,6 m	
Opblandingshøjde/længde	h/l	0,08	0,032	0,032	

Bemærkningsfeltet kan anvendes til en beskrivelse af det forurenede areal.

4.5.3 Forureningsdata

Forureningsdata, dvs. de målte poreluftkoncentrationer eller de beregnede værdier, er overført fra fugacitetsmodulet i **Enkeltstoffer** til udeluftmodulet.

Det er muligt for brugeren at indtaste alternative værdier for diffusionskoefficient i luft og stofafhængig vindhastighed i **Enkeltstoffer**.

Forurening	Ændr bemærkning Skjul detailoplysninger				
Stofnavn (fra enkeltstoffer)	Benzen	Trichlorethylen	Trichlorethylen	Eksempel-n- butylacetat	
CAS-nummer	CAS 71-43-2	CAS 79-01-6	CAS 79-01-6		
Målepunkt Dato	JP-01 1,0 19-01-2012	JP-05 6,5 28-01-2012	PL-1 10-05-2012	VP-2 28-01-2012	
Poreluftskoncentration C _L Test af andre værdier	416	488.000	0,5	22,5	mg/m ^s mg/m ^s
Baggrundskoncentration C ₀					mg/m ^s
Diffusionskoefficient i luft D _L	9,30E-06	7,17E-06	7,17E-06	6,50E-06	m²/s
Vindhastighed (stofafhængig) V	1	1	1	0,1	m/s

I dataark for enkeltstoffer defineres for hvert målepunkt, hvilke endelige koncentrationer, der anvendes i de efterfølgende beregninger. Såfremt der er målt en poreluftkoncentration, anvendes denne, ellers anvendes en poreluftkoncentration beregnet ift. en vandprøve, eller som sidste mulighed en poreluftkoncentration beregnet ift. en jordprøve. I eksemplet ovenover anvendes den målte poreluftkoncentration for målepunkt PL-1 (0,5 mg/m³) og beregnede koncentrationer ift. Jordprøverne Jp-01 1,0 og JP-05 6,5 samt for vandprøven VP-2.

4.5.4 Beregning af udeluftbidrag

Det beregnede bidrag til udeluften vises, så snart der er indtastet data for jordlagene, idet koncentrationerne automatisk hentes fra fugacitetsmodulet.

Beregning: Udeluft						
Total bidrag til udeluft	C_{u}	0,0014	1,22	1,25E-06	5,10E-04	mg/m³
Afdampningskriterie		0,00013	0,001	0,001	0,1	mg/m³
Overskridelse af kriteriet		10	1223	Nej	Nej	gange
Anvendt brugerdata?		Ja, se bemærkning	Ja, se bemærkning	Nej	Ja, se bemærkning	

4.5.5 Baggrundskoncentration og test af andre værdier

Der er også mulighed for at indtaste en baggrundskoncentration for udeluft (f.eks. $0,005 \text{ mg/m}^3$) eller afprøve andre poreluftkoncentrationer (f.eks. 10 mg/m^3), i hvilket tilfælde der med rødt vises, at brugerdata er anvendt og brugeren bør indtaste en bemærkning i bemærkningsfeltet.

Forurening	Ændr bemærkning Vis detailoplysninger				
Stofnavn (fra enkeltstoffer)	Benzen	Trichlorethylen	Trichlorethylen	Eksempel-n- butylacetat	
Målepunkt	JP-01 1,0	JP-05 6,5	PL-1	VP-2	
Dato	19-01-2012	28-01-2012	10-05-2012	28-01-2012	
Poreluftskoncentration CL	416	488.000	0,5	22,5	mg/m ^s
Test af andre værdier	10				mg/m ^s
Baggrundskoncentration C ₀	0.005				mg/m ^s
		·			
Beregning: Udeluft					
Total bidrag til udeluft C _u	3,25E-05	1,22	1,25E-06	5,10E-04	mg/m³
Afdampningskriterie	0,00013	0,001	0,001	0,1	mg/m³
Overskridelse af kriteriet	Nej	1223	Nej	Nej	gange
Anvendt brugerdata?	Ja, se bemærkning	Ja, se bemærkning	Nej	Ja, se bemærkning	

4.5.6 Navigation, print og nulstilling af værdier

Navigeringen til andre moduler og inden for modulet foregår ved hjælp af knapperne i toppen af arket, som beskrevet i kapitel 2 og illustreret i **Fejl! Henvisningskilde ikke fundet.**.

Ved at klikke på knapperne yderst til højre kan fagmodulerne vælges (**Grundvand**, **Indeklima** eller **Vertikal transport**) og dermed hvilke andre risikovurderinger, der eventuelt skal udføres.

Beregning af udeluftkoncentrationen					Enkeltstoffer	Dataark	Grundvand
Lokalitetsnavn:	Renseri				Overfør værdier	Udskrift	Indeklima
Adresse:	Stationsvej 2	Postnr./By:	3450		Nulstil værdier	Veiledning	Vertikal transport
Lokalitetsnummer:	255-2651	Projektnr:	588889				
Beregning udføres for :	Benzen	Trichlorethylen	Trichlorethylen	Ek	sempel-n-		

I toppen af arket kan der navigeres tilbage til Enkeltstoffer, hvor måle- og stofdata kan ændres.

Ved at klikke på **Dataark** vises en oversigt over de anvendte værdier og parametre og evt. mellemregninger. **Nulstil værdier** er beskrevet i afsnit 2.5 og betyder, at alle indtastede data, f.eks.de valgte jordtyper og -dybder, indtastede værdier som baggrundskoncentrationer og "Test af andre værdier", nulstilles. Poreluftskoncentrationer, der er overført fra **Enkeltstoffer**, nulstilles ikke.

Overfør værdier betyder, at der kan overføres oplysninger om jordlagstyper og -tykkelser samt om det forurenede område fra modul for udeluft for olie- og benzinblandinger. Inden dataoverførelsen gennemføres kommer en advarselstekst om at funktionen vil overskrive eventuelt indtastede værdier i regnearket.

Ved at klikke på **Vejledning** hentes en kort vejledning i, hvordan de enkelte data indtastes. For en mere teoretisk baggrund henvises til Miljøstyrelsens vejledning nr. 7, 1998, appendiks 5.3 /6/.

Ved at klikke på **Udskrift** åbnes for et ark som kan udskrives som projektdokumentation enten til den ønskede printer eller som pdf, jf. Figur 4.6.

Ved at klikke på **Udskriv ark** udskrives til brugerens standardprinter. For at vælge andre printer, opsætninger m.v. skal der anvendes Excel's FILE/Print tab.

Udeluftberegning	Udskriv ark		
Lokaliteten			
Navn:	Renseri	Lokalitetsnr.: 255-2651	Luk
Adresse:	Stationsvej 2	Postnr/by: 3450	
Matrikel nummer:	Udenbys nr. 12f	Projekt nr.: 588889	
Note	Kontrol af måledata		

Ved at klikke på Luk navigeres tilbage til modulet for Udeluft.

Navn: Adresse: Matrikel nummer: Note	Rense Statio Udent Kontro	ri isvej 2 ys nr. 12f I af måledata		Lokalitetsnr. Postnr/by Projekt nr.	255-2651 3450 588889		Navn: Adresse: Matrikel nummer: Note	Renseri Stationsvej 2 Udenbys nr. 12f Kontrol af måledata	Lokalitetsnr.: 255-2651 Postnrby: 3450 Projekt nr.: 588889
Jordparametre Kommentar Jordlag, Dybde fra Jordlag, Dybde til Jordtype Materialekonstant Samlet ækivalent jordlagtykk Tykkelse af jordlag	₩ m u.t. m u.t. else (app	Indtastede data Jordiag 1 0,2 Sandmuld 0,007 5.3 - lign. 51)	Image: constraint of the second sec	d) Jordiag 3	Jordiag 4		Bemærkninger om jordlag	Tynd lag grus	
Stoffer Kommentar Forureningskomponent Poreluftskoncentration Beregnet værdi anvendt Testværdi anvendt Baggrundskoncentration	C _L	Stof 1 Benzen 10,0 Nej Ja 0,005	Stof 2 Trichlorethylen 488.000 Ja Nej 0	Stof 3 Trichlorethylen 0,5 Nej Nej 0	Stof 4 Eksempel-n-butytaceta 22,5 Ja Nej 0	ng/m³	Bernærkninger om forurenet område	Ingen ændringer	
Stofegenskaber Diffusionskoefficient luft Vindhastighed (sofahaengig) Det forurenede om Længde af det forurenede område Opblandingshøjde/ængde	DL v iråde I h	9,3E-06	7,2E-06 1 100 8,0 0,08	7.2E-06 1 m m	6,5E-00	s m²/s m/s	Bernærkninger om forurening	Kommentar 1	
Beregning: Udeluft Kommentar Malepunkt Dato Totabildrag til udelutt Atdampningskriterie Overskridelse af kriteriet Anvendt brugerdata? Beregningerne udført Firmanavn	MP dato	Stof 1 JP-01 1,0 19-01-2012 3,25E-05 1,3E-04 Nej Ja, se bemærkning	Stof 2 JP-05 6,5 28-01-2012 1,22 0,001 1,220 Ja, se bemærkning B	Stof 3 PL-1 10-05-2012 1,25E-06 0,001 Nej Nej eregningerne ontrolleret	Stof 4 VP-2 28-01-2012 5,10E-04 J 0,1 Nej Ja, se bemærkning kontrolleret /go	mg/m ³	Bemærkninger om kemiske stoffer	Der er anvendt værder fra Verschur Nedbrydningskonstanter for benzen forhold er satt til 0. Nedbrydningskonstanter for benzen forhold er satt til 0,001.	ren 1996 for n-butylacetat. og trichtorettylen i grundvand under anaerobe i umættede zone under aerobe anaerobe
Navn/initialer Dato/Underskrift Beregningerne er udført mec	_JAF	r angivne data og i	den at der er foretag	Godkendt	əregningsformler	-			
Lidskrevet den 03-09-201310	-51				Side 1	at 2	Lidskrevet den 03-09-2013	310:51	Side 2

EKSEMPEL PÅ UDSKRIFT FOR UDELUFTBEREGNING (ENKELTSTOFFER)

5. Oliestoffer

Når man på opstartsiden vælger modulet **Olie & Benzin**, åbnes et nyt modul, som i hovedprincipperne ligner modulet **Enkeltstoffer**, med fugacitetsmodul, og fagmodulerne **Grundvand, Indeklima, Udeluft** og **Vertikal transport**. Men hvor modulet **Enkeltstoffer** tager udgangspunkt i de fysisk-kemiske egenskaber for de enkelte stoffer, foretages beregningerne i **Olie & Benzin** modulet med en række modelstoffer. I modulet **Enkeltstoffer** er der mulig for at tilvælge og fravælge stoffer, at oprette nye stoffer og at ændre på de stoffers egenskaber. Disse muligheder findes ikke i **Olie & Benzin** modulet, hvor der foretages beregninger med de i systemet definerede stoffer og egenskaber.

5.1 Fugacitetsmodulet - indgangen til alle beregninger med olie- og benzinblandinger

Fugacitetsmodulet er det helt centrale modul i **Olie & Benzin** delen af JAGG 2.0. I dette modul er det udelukkende muligt at indtaste analyseresultater for jordprøver. Der kan ikke indtastes analyseresultater for vand- eller poreluftsprøver, hvorfor disse værdier skal beregnes ud fra en jordprøve og fugacitetsprincippet. For en mere teoretisk baggrund henvises til Miljøstyrelsens vejledning nr. 7, 1998, appendiks 5.6 /6/ og Miljørapport Opgradering af JAGG. Revision af fugacitetsberegninger, håndtering af fri fase og blandingsforureninger /3/

5.1.1 Jordtype

Alle beregninger indledes med at man indtaster data om jordarten, hvorfra prøverne er udtaget.

Data om jordtyper kan som under **Enkeltstoffer** vælges fra en liste over standardjordtyper, fra en egenliste eller indtastet manuelt i de hvide felter. I kapitlet 2.3 er beskrevet, hvordan data fra valglister fremsøges og hentes.

Man kan kombinere indlæsning fra valglister og manuel indtastning. Hvis man f.eks. ønsker, at beregningerne for en eller flere af værdierne skal gennemføres med en anden værdi, end den der fremgår af valglisten, kan dette gøres ved at indtaste værdien i det hvide felt ud for den pågældende oplysning. Hvis et hvidt felt er udfyldt vil beregningerne altid blive gennemført med denne værdi. I nedenstående eksempel gennemføres beregningerne med et organisk indhold på 0,5 og ikke 0,1 som er standardværdien.

Jordtype	Vælg jordar	Ændr bemærkning							
	Jordtype	Poreluft- volumen VL	Vand- indhold Vv	Samlet porøsitet ≈=VL+Vv	Volumen af jordskellet VJ	Korn- rumvægt (kg/l) d	fylde (kg/l) P	% Indhold organisk kulstof f _{cc}	
Jordtype Egen liste	Sand	0,0 - 0,45	0,05 - 0,35 0,15	0,45	0,55	2,6 - 2,7 2,65	1,4575	0.1	

Såfremt man indtaster en egenværdi i stedet for en standardværdi, bør man i bemærkningsfeltet anføre, hvorfor man ændrer i beregningsforudsætningerne.

B	lemærkning	×
1	Indtast bemærkning:	
	Jordtypen er indtastet for jordprøven JP-01 fra 1 m u.t. Organisk kulstof er beregnet fra glødeta * 0,58.	ab
	QK <u>F</u> ortryd <u>S</u> let tekst	

Jordtypen anvendes kun til at beregne fugacitet, Beregning af transport igennem jordlag til udeluft, indeklima eller grundvand baseret på de aktuelle jordlag eller aquifermateriale, som vælges i de pågældende moduler.

5.1.2 Indtastning af kemiske data

Til identifikation af jordprøven kan indtastes Målepunkt og Dato.

Inden jordprøven indtastes, skal det olieprofil vælges, som passer bedst til den olietype, beregningerne skal foretages for. I JAGG 2.0 er der to typer af olieprofiler en **Olie/benzinblanding** som typisk anvendes ved benzin-, diesel- eller fyringsolieforureninger samt blandinger heraf, og en **Tung olie blanding**, som anvendes for tunge olier.

I Miljørapport om Opgradering af JAGG, Revision af fugacitetsberegninger, håndtering af fri fase og blandingsforureninger /3/ beskrives de forskellige olieprofiler og baggrunden for valget af disse. Rapporten giver en beskrivelse af olieprofilerne, og hvornår hvilke profiler skal vælges.

Arket er opdelt således, at der kan indtastes værdier for hovedparten af de parametre, som kan forekomme ved analyse af jordprøver for kulbrinteblandinger (benzin og olie).

De kemiske data er hierarkisk opbygget med følgende grupper:

- Summen af kulbrinter
- Kulbrintefraktioner efter
- Modelstoffer / enkeltstoffer.

Øverst i hierarkiet er værdi for summen af kulbrinter. Det betyder, at hvis man indtaster en værdi for summen af kulbrinter, så udmøntes dette automatisk i ændringer i koncentrationen for alle fraktioner og modelstoffer, i henhold til den olieprofil som er valgt.

Næstøverst i er kulbrintefraktioner. Hvis man indtaster en værdi for en af kulbrintefraktionerne, vil dette have betydning for to forhold:

- 1. En automatisk ændring af koncentrationen for modelstoffer, som hører under kulbrintefraktion. Ændres f.eks. C2o-C35 fraktionen, så vil dette bevirke, at koncentrationen ændres modelstofferne, der ligger i intervallet bl.a. PAH'erne Benzo(a)pyren og Benzo(a)anthracen.
- 2. En automatisk ændring af koncentrationen af de andre kulbrintefraktioner efter Kulbrintemetoden. Regnearket sikrer, at summen af kulbrintefraktionerne svarer til "Summen af kulbrinter" så vidt dette kan lade sig gøre. Eksempelvis kan Summen af kulbrinter være 400 mg/kg, hvis der vælges en olieprofil som tung olie vil koncentrationen af kulbrintefraktionerne være 7 mg/kg for C6-C10 fraktionen, 76 mg/kg

for C10-C15 fraktionen, 52 mg/kg for C15-C20 fraktionen samt 256 mg/kg C20-C35 fraktionen. Hvis C6-C10 fraktionen sættes til 25 mg/kg TS, så vil der være 375 mg tilbage til de tre andre fraktioner, som fordeles med det samme forhold hvilket giver 72 mg/kg til C10-C15 fraktionen, 50 mg/kg til C15-C20 fraktionen og 253 mg/kg til C20-C35 fraktionen.

Når der indtastes en målt værdi for et stof/fraktion låses denne værdi. Hvis der yderligere indtastes f.eks.100 mg/kg C10-C15, vil de resterende 275 mg deles mellem fraktionerne C15-C20 og C20-C35, med henholdsvis 45 mg/kg og 230 mg/kg.

3. Hvis summen af de indtastede værdier bliver større end værdien for Sum af kulbrinter, bliver de resterende fraktioner sat til 0, men summen af kulbrinter bliver <u>ikke</u> rettet. Et eksempel herpå er vist i figuren nedenfor, hvor summen af kulbrintefraktioner er 425 mg/kg, mens Summen af kulbrinter kun er 400 mg/kg. Indtastninger af målte værdier kan således give anledning til ændringer nedad i hierarkiet og til siden men aldrig opad i hierarkiet.

Kemiske data og fugacite Lokaliteten	t for oliekomponenter			Opstart	Dataark	Grund vand-Olie	
Lokalitetsnavn:	oXford Rens			Enkeltstoffer	Udskrift	Indekli ma-Olie	
Adresse:	Peter Lipsvej	Postnr./By:	2610 Rødovre	The second second second	Valladalar	Links Of	
Lokalitetsnummer:	122-00502X	Projektnr:	A07412-A-01	Truiser værdier	vejeditig	Odeld k-one	
						Vertikal trans-Olie	J
Målepunkt	OM2 - 4,5 m u.t.					Bemærkning	
Dato	01-02-2010					-	-
	Vælg profil for oliekomponer	rt					
	Olie/benzinblanding	© Tung	olie				
	Jordkoncentrat	ion Ct	Porevands	skoncentration Cu	P	oreluftskoncen	tration CI
	Indtastede Beregnet ud Jo	ord- Overskridelse	fugacitets-	Grundvand Overskridelse	fug	acitets Afdampnin	g Overskridelse
	værdier fra olieprofil kval	itets- of kriteriet	beregning ud	s-kvalitets- of kriteriet	bere	gning ud s-kriterium	af kriteriet
	mg/kgTS mg/kgTS mg/	kg TS gange	µg/l	µg/l gange	hap	ng/m' mg/m'	gange
Sum af kulbrinter Cs-Css	400 400 10	00 4	133	9 15	86	56,46 0,1	86565
Kulbrintefraktioner							
UrUn	25 25 2	25 Nej	110		8	536,98	
CarCa	70 70 70	55 1272727	19		_	0.64	
Ca-C ₁₅	300 300 1	00 3	2			0,00	
Aromatiske kulbrinter							
Ca-Ca aromatiske kulbrinter			0,01	1 Nej		0,08 0,03	2,819476
OTFVI	malka TC malka TC mail					and a state	
Benzen	4.5 4.500	15 3	25.64	1 25,64404	2	425.90 0.00013	18660775
Toluen	12 12.000	#DIV/0!	45.36	5 9.07118	4	596.16 0.4	11490,41
Eyhylbenzen	4,2 4,200	— i—	11,14		6	05,50	
o-Xylen	0,000		i — i				
m+p-Xylen	0,000						
Sum Xylener	10,8 10,800	#DIV/0!	28,13	5 7,854322		09,33 0,1	16148,29
Naphtalen	15 15,000		16,44	1 16,43537		10,99 0,04	274,8365
Polyaromatiske Kulbrinter (P_mgłkgTS_mgłkgTS_mgł	kg TSgange	µg/l	µg/l gange		ngim' ngim'	gange
Benzo(ghi)perylen	0,40		0,000		9	23E-11	
Fluoranthen	. 0,8 0,80		0,029	0,1 Nej	3,	94E-05	
Benzo(a)pyren	1,2 1,20 0),3 4	0,004	0,01 Nej	2,	09E-08	
Benzo(b+j+k)fluoranthen	0,6 0,60		V 0,002		4,	83E-09	
Dibenz(a,h)anthracen	2,1 2,10 0),3 7	V 0,001		1	03E-11	
Indeno(1,2,3-cd)pyren	0,1 0,10		V 0,000		3	,11E-11	
Sum af 7 PAH'er jord	J 4,80	4 1,2	V 0.002	0.1 Nei			
ournal 41 Airter valid			4 0,000 1	of 1 real			
NSO-forbindelser	mg/kg TS mg/kg TS mg/	kg TS gange	<u></u>	µg/l gange		ng/m' mg/m'	gange
Benzo(b)thiophen	0,020		0,241		0,	47503	
Dibenzofuran	0,040		0,035		0,	100744	
Dibenzothiophen	0,005		0,002		6	2E-06	
Acridin	0,020	_	0,093		10	2E-05	
Carbazol	0,010	_	0,056		2,	72E-08	
Anilin	0,000		0,303		0,	300471	
Dimethylaisuina	1 0,005		1,1/6	1	1.3	23920	
Frifase?	Nej						
Anvendt Brugerdata	Ja						

5.1.3 Beregnede koncentrationer for vand og poreluft

Så snart der er indtastet en jordtype samt en målt koncentration for en jordprøve beregnes de teoretiske koncentrationer for vand og poreluft ud fra en teoretisk fasefordeling efter fugacitetsprincippet.

Beregningerne foretages for modelstofferne, hvorefter de beregnede koncentrationer summeres i passende fraktioner, og der foretages en sammenligning med gældende kvalitetskriterier.

Baseret på de beregnede porevands/grundvandskoncentrationer foretages en vurdering af, hvorvidt der kan være fri fase væske, dvs. at koncentrationerne overskrider den maksimale opløselighed.

Af dataarket og beregningsarket fremgår det, hvilke modelstoffer som indgår i beregningerne.

5.1.4 Navigation, print og nulstilling af værdier

Navigeringen til andre moduler og inden for modulet foregår ved hjælp af knapperne i toppen af arket, som beskrevet i kapitel 2 og illustreret i

. Ved at klikke på knapperne yderst til højre kan fagmodulerne vælges (**Grundvand, Indeklima**, **Udeluft** eller **Vertikal transport**) og dermed hvilke risikovurderinger, der skal udføres.

Kemiske data og fugacitet for oliekomponenter Lokaliteten					Dataark	Grundvand-Olie
Lokalitetsnavn:	oKford rens			Enkeltstoffer	Udskrift	Indeklima-Olie
Adresse:	Peter Libsvej	Postnr./By:	2610/Rødovre	Nulstil værdier	Vejledning	Udeluft-Olie
Lokalitetsnummer:	122-00502X	Projektnr:	A07412-A.01			·
				Vertikal trans-Olie		

Ved hjælp af knapperne til venstre kan der navigeres tilbage til **Opstart** (lokalitetsdata) eller til **Enkeltstoffer** for beregning af fugacitet for olie- og benzinblandinger.

Nulstil værdier er beskrevet i afsnit 2.5 og betyder, at alle indtastede data f.eks. valgte jordtyper og indtastede koncentrationer, nulstilles. Det vil sige, at man kan starte forfra med en ny beregning.

Såfremt der er indtastet nye jordtyper i egne lister, vil disse selvfølgelig ikke blive slettet, idet disse data kun kan slettes, mens menuen for egne lister er åben, jf. afsnit 2.3.

Ved at klikke på **Dataark** vises en oversigt over de anvendte værdier og parametre og evt. mellemregninger (se bilag 1).

Ved at klikke på **Vejledning** hentes en kort vejledning i, hvordan data indtastes. For den teoretiske baggrund henvises til Miljørapport /3/.

Der kan laves en udskrift af beregninger til projektdokumentation, jf. fig.2.1. Ved at klikke på **Luk** navigeres tilbage til modul for enkeltstoffer.

Navn: Adresse:	oKford rens Peter Libsvej	Lokalitetsnummer 122-00502X Postnr/by 2610/Rødovre Projekt nr. A07412-A.01	Navn: oKford rens Adresse: Peter Libsvej	Lokalitetsnummer 122-00502X Postnr/by 2610/Rødovre Projekt nr. A07412-A.01
Jord Kommentar Jordtype Poreluftvolumen Vand-indhold Samtet poresitet Volumen af jordskellet Komrumvægt Volumenvægt Indhold af organisk kulstof	Σ Standard data Indtas V. 0.3 0.3 V., 0.15 0.45 V., 0.45 0.45 V., 0.55 0 d 2.65 0 μ 0.1 0.1	atede data (angives med fed)	Bemærkninger om jordtypen	
Beregning: Grundvan Kommentar	Málepunkt OM 2 - 4,5 m u.t. 01-6	Dato Fri fase? Anvendt brugerdata 02-2010 Nej Ja		
BTEX'er Berton Tolen Beylonzen Register Kubintefraktioner Grug, Volketiad Grug, Statte Grug, Statte Grug, Statte Grug, Statte Grug, Statte Grug, Statte Grug, Statte Grug, Statte	Jordkoncentrationer generation generation generation generation mg/mg/mg/mg/mg/mg/mg/mg/mg/mg/mg/mg/mg/m	Vankoncentrationer Porturit Kenc. 19 gr.	demanninger kemisk andyse	
Navn/initialer Dato/Underskrift Beregningeme er udført med	Tage V. Bote/TVB	Godkendt aaa		
	and the second s			

FIGUR 5.1

EKSEMPEL PÅ UDSKRIFT AF FUGACITETSBEREGNING (OLIESTOFFER)

5.2 Vertikal transport - Oliestoffer

I modulet for vertikal transport beregnes transport og evt. nedbrydning igennem et homogent jordlag ned til det førstkommende betydende grundvandsmagasin.

Modulet er baseret på beregninger beskrevet i Miljøprojektet om vertikal transport ned til det førstkommende betydende magasin /4/. Konceptet er illustreret i Figur 4.2, jf. afsnit 4.2 og kan anvendes for enten umættet eller vandmættet forhold.

Beregningerne udføres for teoretiske porevandskoncentrationer for forurening med benzin- eller olieblandinger. De teoretiske poreluftkoncentrationer for en række repræsentative kulbrinte-fraktioner og modelstoffer er beregnet i fugacitetsmodulet **Olie & Benzin**, jf. afsnit 5.

5.2.1 Indtastning af jordtype og oplysning om det forurenede område

Fremgangsmåden er den sammen som for vertikal transport for enkeltstoffer, jf. afsnit 4.2.

Ved at vælge knappen **[Overfør værdier]** kan der hentes oplysninger fra modulet for vertikal transport for enkeltstoffer om jordlagstyper og -tykkelser samt om det forurenede område.

For vertikal transport igennem umættet homogen jord, kan der enten vælges en standardjord, f.eks. sand eller angives lokalspecifikke værdier. Det er også muligt at oprette og anvende egne "**Jordtyper**" ved at klikke på knappen "**Egen liste**".

Desuden kan der indtastes oplysninger om det forurenede område, nettonedbør og afstand til grundvandsspejl, jf. afsnit 4.2.1 og 4.2.2.

Kildeområde		Indtast data om kildeområ	ide.	
Længde af kildeområdet	Ŷ	5	m	
Dieuue ai kiloeomiauel	^	Nedbør Egen liste	m	
Nettonedbør	N	300	mm/år	
Kommune/Egn				
		Faxe		
Afstand til grundvandsspejl	z	15	m	
Porevandhastighed	Vw	2,0	m/år	
		Normal range (stiger med afstand z) 2-20 m	Beregnet iht. z jf. app. 5.8 figur 2.0	Brugerdata
Longitudinal dispersivitet	α _{L.W}	0,004-0,07	0,003	
Transversal dispersivitet	α _{T.W}	0,0004-0,007	0,0003	

Jordparametre	Vælg jorda	rt for fugacitets	beregning eller i	indtast egen jorda	rtsdata				Bemærkning
	Jordtype	Poreluft- volumen VL	Vand-indhold Vv	Samlet porøsitet ≈=V⊾+Vv	Volumen afjordskellet Vj	Kom- rumvægt (kg/l) d	Bulk massefylde (kg/l) p	% indhold aforganisk kulstof f∞	
Jordtype Egen liste	Sand	0,0 - 0,45 0,3	0,05 - 0,35 0,15	0,45	0,55	2,6 - 2,7 2,65	1,4575	0,1	

5.2.2 Forureningsdata

Forureningsdata, dvs. de teoretiske porevandskoncentrationer for forurening med benzin- eller olieblandinger, er overført til "**vertikal transport-olie**"- modulet og kan ikke ændres. Kun ved

ændringer af jordkoncentrationer i **Olie & benzin** vil der ske ændringer af de anvendte forureningsdata.

Resultaterne vises efter indtastning af jordlag.

Beregning: Grundvand	Data for forurening er overført fra fugacitetsmodulet for oliestoffer							
Målepunkt		JP-01						
Dato	25	-10-2012						
Frifase?		Nej						
Anvendt Brugerdata?		Nej						
	Porevand s-konc konc.	Nedbrydnings konstant anvendt for alle oliestoffer Defaul 0 Bruger	Stationær porevandkonc. i toppen af GV magasin	Transient porevandkonc. i toppen af GV magasin efter x år	Grundvands- kriteriet	Overskridelse af kriteriet i toppen af GV magasin under stationær forhold		
	μg/l	dage-1	μg/l	μg/Ι	μg/l	gange		
BTEX'er	0.017		0.017	49311151		Nie:		
Benzen	0,017	0	0,017	#VALUE!	1	Nej		
Toluen Estado acora	0,011	0	0,011	#VALUE!	5	Ive		
Ethylbenzen Gue Mulas es	0,008	0	0,008	#VALUE!				
Sum Xylener	0,008	0	0,008	#VALUE!	E	Mai		
Sum Agiener + etnyibenzen	1.49	0	0,016	#VALUE!	5	15		
Naphthalen Kulhrintofraktioner	1,40	U	1,40	#VALUE!		1,0		
	21,335	0	21,335	#VALUE!				
C ₁₁ -C ₁₅	259,341	0	259,341	#VALUE!				
C15-C2	0,534	0	0,534	#VALUE!				
Car-Cas	-0,002	0	-0,002	#VALUE!				
Sum af kulbrinter	284,068	0	284,068	#VALUE!	9	31,6		
Alkylbenzener, aromatiske kulbri	nter							
C3-C41 aromatiske kulbrinter	20,962	0	20,962	#VALUE!	1	21,0		
Polyaromatiske Kulbrinter (PAH)	·							
Fluoranthen	0,033	0	0,033	#VALUE!	0,1	Nej		
Benzo(a)pyren	0,001	0	0,001	#VALUE!	0,01	Nej		
Benzo(b+k)fluoranthen	0,002	0	0,002	#VALUE!				
Benzo(ghi)perylen	0,0	0	0,0	#VALUE!				
Indeno(1,2,3-cd)pyren	0,0	0	0,0	#VALUE!				
Sum at 4 P'AH'er	0,003	U	0,003	#VALUE!	0,1	Nej		
NSO-forbindelser								
Benzo(b)thiophen	1,009	0	1,009	#VALUE!				
Dibenzofuran	0,0	0	0,0	#VALUE!				
Dibenzothiophen	0,01	0	0,01	#VALUE!				
Acridin	0,0	0	0,0	#VALUE!				
Carbazol	0,107	0	0,107	#VALUE!				
Anilin	0,85	0	0,85	#VALUE!				
Dimethyldisulfid	0,883	0	0,883	#VALUE!				
Sum af NSO-forbindelser	2,859	0	2,859	#VALUE!				

Nedbrydningskonstanter for nedbrydning i den umættede zone er af Miljøstyrelsen defineret som nul, dvs. at der i standardberegninger antages, at der ikke foregår nedbrydning under den vertikale transport. Dette betyder, at den stationære porevandskoncentration lige over grundvandet vil være lig porevandskoncentrationen lige under kilden.

Der kan i det hvide felt indsættes en tid, t (år), hvorved porevandskoncentrationerne (transiente porevandskoncentrationer) lige over grundvandspejlet efter tiden t beregnes. I følgende eksempel kan det ses, at porevandskoncentrationen lige over grundvandspejlet ikke har nået stationære forhold efter 10 år, fordi koncentrationerne i kolonnen "Stationær porevandskonc. i toppen af GVmagasin" ikke er lig med koncentrationerne i kolonnen "Transcient porevandskonc. o tippen af GVmagasin efter x år

Målepunkt JP-01 Dato 25-10-2012 Fri fase? Nej	
Frifase? Nej	
Anvendt Brugerdata? Ja, se bemærkning	
Nedbrydnings Stationær Transient Overskridelse Porevand konstant anvendt porevandkonc, i porevandkonc, i Grundvands- s-konc for alle toppen af GV kriteriet toppen af GV konc. oliestoffer magasin magasin efter x år magazin under stationær forhold Bruger	
μg/l dage-1 μg/l μg/l μg/l gange	
BTEX'er Benzen 0.017 0 0.017 0.013 1 Nei	
Toluen 0,011 0 0,011 0,007 5 Nej	
Ethylbenzen 0,008 0 0,008 0,003	
Sum Xylener 0,008 0 0,008 0,003	
Sum Xylener + ethylbenzen 0,016 0 0,016 0,007 5 Nej	
Naphthalen 1,48 0 1,48 0,002 1 1,5	
Kulbrintefraktioner	
Cr-Cn 21,335 0 21,335 3,274	
CurCus 259,341 0 259,341 0,02	
C ₁₅ -C ₁₁ 0,534 0 0,534 0,0	
CarCarCarCarCarCarCarCarCarCarCarCarCarC	
Sum af kulbrinter 284,068 0 284,068 4,957 9 31,6	
Alkelbenzener, aromatiske kulbrinter	
Cg-Cg aromatiske kulbrinter 20.962 0 20.962 3.047 1 21.0	
Polearomatiske Kulbrinter (PAH)	
Fluoranthen 0,033 0 0,033 0,0 0,1 Nei	
Benzo(a)pyren 0,001 0 0,001 0,0 0,01 Nej	
Benzo(b+k)fluoranthen 0,002 0 0,002 0,0	
Benzo(ghi)perglen 0,0 0 0,0 0,0	
Indeno(12,3-cd)pyren 0,0 0 0,0 0,0	
Sum af 4 PAH'er 0,003 0 0,003 0,0 0,1 Nej	
NCO (arkindelear	
Benzo(b)thiophen 1,009 0 1,009 0,022	
Dibenzofuran 0,0 0 0,0 0,0	
Dibenzothiophen 0,01 0 0,01 0,0	
Acridin 0,0 0 0,0 0,0	
Carbazol 0,107 0 0,107 0,0	
Anilin 0,85 0 0,85 0,85	
Dimethyldisulfid 0,883 0 0,883 0,791	
Sum af NSD-forbindelser 2,859 0 2,859 1,663	

Såfremt der foretages følsomhedsberegning af konsekvenser ved nedbrydning i den umættede zone, kan der indsættes én nedbrydningskonstant, som gælder for alle oliestoffer. Derfor giver beregninger med nedbrydning ingen realistisk fordeling af koncentrationer af oliestoffer efter vertikal transport igennem jordlagene. Ved indtastning af en nedbrydningskontant vises en rød advarsel.

Beregning: Grundvand	Data for fo	rurening er ove	rført fra fugacite	etsmodulet for olies	stoffer	
Målepunkt		JP-01				
Dato	25	10-2012				
Frifase?		Nej				
Anvendt Brugerdata?	Ja, se t	emærkning				
	Porevand s-konc konc.	Nedbrydnings konstant anvendt for alle oliestoffer Defaul 0 Bruger 0.001	Stationær porevandkonc. i toppen af GV magasin	Transient porevandkonc. i toppen af GV magasin efter x år	Grundvands- kriteriet	Overskridelse af kriteriet i toppen af GV magasin under stationær forhold
	μg/l	dage-1	µg/l	μg/l	μg/l	gange
BTEX'er		-				
Benzen	0,017	0,001	0,006	0,006	1	Nej
Toluen	0,011	0,001	0,004	0,004	5	Nej
Ethylbenzen	0,008	0,001	0,003	0,002		
Sum Xylener	0,008	0,001	0,003	0,002	F	Al-:
Sum Xylener + ethylbenzen	0,016	0,001	0,006	0,004	5	Nej
Naphthaien Mathaiseacha baile an	1,48	0,001	0,271	0,001	1	Ive
CrC1	21,335	0,001	8,084	2,584		
C ₁₀ -C ₁₅	259,341	0,001	56,692	0,019		
C45-C20	0,534	0,001	0,089	0,0		
Car-Cas	-0,002	0,001	0,0	0,0		
Sum af kulbrinter	284,068	0,001	65,4	2,945	9	7,3
Alkelbanzanar, szomsticka kulkri	ntar					
C ₁ -C ₄ aromatiske kulbrinter	20.962	0.001	7 764	2.37	1	7.8
Polasromaticka Kulbrinter (PAH	20,002	0,001	1,101	2,01		
Fluoranthen	0.033	0.001	0.005	0.0	01	Nei
Benzo(a)puren	0.001	0.001	0.0	0.0	0.01	Nei
Benzo(b+k)fluoranthen	0.002	0.001	0.0	0.0		
Benzo(ghi)perulen	0.0	0.001	0.0	0.0		
Indeno(1.2.3-cd)puren	0.0	0.001	0.0	0.0		
Sum af 4 PAH'er	0,003	0,001	0,0	0,0	0,1	Nej
Benzo(b)thiophen	1.009	0.001	0.181	0.009		
Dibenzofuran	0.0	0.001	0.0	0.0		
Dibenzothiophen	0.01	0,001	0,002	0.0		
Acridin	0,0	0,001	0,0	0.0		
Carbazol	0,107	0,001	0,017	0,0		
Anilin	0,85	0,001	0,138	0,138		
Dimethyldisulfid	0,883	0,001	0,197	0,194		
Sum af NSO-forbindelser	2,859	0,001	0,535	0,342		

5.2.3 Navigation, nulstilling og print

Navigeringen til andre moduler og inden for modulet foregår ved hjælp af knapperne i toppen af arket, som beskrevet i kapitel 2 og illustreret i **Fejl! Henvisningskilde ikke fundet.**.

Ved at klikke på knapperne yderst til højre kan de øvrige fagmoduler vælges (**Grundvand-Olie**, **Indeklima-Olie** eller **Udeluft-Olie**).

Vertikal transport i det umættede zone - Oliestoffer			Oliestoffer	Dataark	Indeklima-Olie
Lokalitetsnavn:	Renseri		Overfør værdier	Udskrift	Udeluft-Olie
Adresse:	Stationsvej 2	Postnr./By: 3450	Nulstil værdier	Vejledning	Grundvand-Olie
Lokalitetshummer.	200-2001	Projektin. 1500005			

I toppen af arket kan der navigeres tilbage til **Oliestoffer**, hvor koncentrationer kan ændres.

Overfør værdier betyder, at der kan overføres oplysninger om jordlagstyper og -tykkelser samt om det forurenede område fra modul for vertikal transport for **Enkeltstoffer**. Inden dataoverførelsen gennemføres, kommer en advarselstekst om at funktionen vil overskrive eventuelt indtastede værdier i regnearket.

Nulstil værdier er beskrevet i afsnit 2.5 og betyder, at alle indtastede data, f.eks. de valgte jordtyper, nulstilles. Porevandskoncentrationer, der er overført fra **Olie & Benzin**, nulstilles ikke. Såfremt der er indtastet nye jordtyper i egne lister, vil disse selvfølgelig ikke blive slettet, idet disse data kun kan slettes, mens menuen for egne lister er åben, jf. afsnit 2.3.

Ved at klikke på **Dataark** vises en oversigt over de anvendte værdier og parametre og evt. mellemregninger.

Ved at klikke på **Vejledning** hentes en kort vejledning i, hvordan de enkelte data indtastes. For en mere teoretisk baggrund henvises til /4/

Ved at klikke på **Udskrift** åbnes for et ark som kan udskrives som projektdokumentation enten til den ønskede printer eller som pdf, jf. Figur 5.2. Ved at klikke på **Udskriv ark** udskrives til brugerens standardprinter. For at vælge andre printer, opsætninger m.v. skal der anvendes Excel´s FILE/Print tab.

Ve	Udskriv ark			
Lo	· · · · · · · · · · · · · · · · · · ·			
Nav	vn:	Renseri	Lokalitetsnr.: 255-2651	Luk
Adr	esse:	Stationsvej 2	Postnr/by: 3450	
Mat	trikel nr.:	Udenbys nr. 12f	Projekt nr.: 588889	
Not	te	Kontrol af måledata		

Ved at klikke på Luk navigeres tilbage til modulet for Vertikal transport for oliestoffer.

Vertikal transpor	t - oliestoffer	Bemærkninger Dybden til primære	e grundvand er 10 m
Lokaliteten		om kideomrade	
Navn:	Renseri Lokalitetsnr.: 255-2651		
Adresse:	Stationsvej 2 Postnr/by: 3450		
Matrikel nr.:	Udenbys nr. 12f Projekt nr.: 588889		
Note	Kontrol af måledata		
Kildeområde			
Kommeniar			
Længde af kildeområdet	Y 200,0 m		
brodde ar kildeorritadet			
Nettonedbar	Standard data indtastede data (angives med fed)		
Kommune/Ean	Allerød	Bemærkninger Vandmættede	
Afetand til grundvandeenni	7 10.0 m	onijoroparanetre	
Pristanu in grunuvanusspej	2 10,0 11		
Longitudinal dispersivitet	GLW 0,0284		
Transversal dispersivitet	α _{T.W} 0,0028		
Jordparametre			
Kommentar	Standard data Indtastede data (angives med fed)		
Jordtype Vandindhold	Bw 0.15		
Luftindhold	0a 0.3		
Total porøsitet (VL+VV)	n 0,45		
% organisk indhold	foc 0,1		
Bulkmassetylde	ρ 1,4575 kg/l		
Beregning: Vertikal t	ransport	Bemærkninger Teoretisk data	år.
Kommentar	Malepunkt Dato Fri fase? Anvendt brugerdata	om beregning Vuldering eiter ro	a
	JP-01 25-10-2012 Nej Ja		
	Pore- Nedbryd- Stationær Transient Grund Over-		
	vands nings porevandkonc, i toppen porevandkonc, i toppen vands- konc konstant all GV manesin all GV manesin efter kritariet af kriteriet		
	(stationar		
BTEX'er	h8. 0900 h8. h8. h8. h8. h8.		
Benzen	0,017 0,001 0,006 0,006 1 Nej		
Toluen	0,011 0,001 0,004 0,004 5 Nej		
Sum Xulener	0,008 0,001 0,003 0,002		
Sum Xvlener+ethvlbenzen	0.016 0.001 0.006 0.004 5 Nei		
Naphtalen	1,48 0,001 0,271 0,001 1 Nej		
Kulbrintefraktioner			
C6-C10	21,3 0,001 8,08 2,58		
C10.C12	259 0,001 56,7 0,019		
C15-C20	0,534 0,001 0,089 0		
C20-C35	0,002 0,001 0,0 0		
Sum af kulbrinter	284 0,001 65,4 2,94 9 7,3		
Alkylbenzener			
Gg-G10 aromatiske kulbrinte	er 21,0 0,001 7,76 2,37 1 7,8		
Polyaromatiske Kulbrinte	er (PAH)		
Fluoranthen	0.033 0.001 0.005 0 0.1 Nej		
Sum of 4 PAH or	0,001 0,001 0,0 0 0,01 Nei		
NCO feebladeleer	0,000 0,00 0,0 0,1 100		
Sum of NSO forbindelser	2.86 0.001 0.535 0.342		
oom al moo-ioronomoelser			
Beregningerne udført	at Beregningerne kontrolleret /godkendt af		
Firmanavn Navn/initialer	IAF Godkendt		
Dato/Underskrift	via domina		
Reregningerne er udfert med	de ovenfor antivne data og uden at der er foretaget ændringer af beregningsformler		
servit inferrie er domit med	an numun millutun anna all anges es possible servesilles es neraltssillesanses		
I ldskrevet den 03-09-301313	55 Cirka 1 of 0	Lidskrevet den 03-09-201312-55	Sile 2 al 2
00000000000000000000000000000000000000	Side Fail2	Galarden der Großen die Go	306 2 al 2

FIGUR 5.2 UDSKRIFT FOR BEREGNING AF VERTIKAL TRANSPORT FOR OLE & BENZIN.

5.3 Grundvand - Oliestoffer

I dette modul kan der foretages en beregning af konsekvenser for grundvand, jf. appendiks 5.6 i MST´s Oprydningsvejledning fra 1998, baseret på teoretiske porevandskoncentrationer for forurening med benzin- eller olieblandinger. De teoretiske poreluftkoncentrationer for en række repræsentative kulbrintefraktioner og modelstoffer er beregnet i fugacitetsmodulet **Olie & Benzin**.

Da der er tale om teoretiske porevandskoncentrationer foretages kun beregninger i henhold til trin for kildestyrkekoncentrationer, dvs. der foretages beregninger svarende til trin 1a, jf. afsnit4.3.

5.3.1 Indtastning af oplysninger om det forurenede område og grundvandsmagasin

Fremgangsmåden er den sammen som for grundvandsmodulet for enkeltstoffer, jf. 4.3.2.

Ved at vælge knappen **Overfør værdier** kan der hentes oplysninger fra modulet for grundvand for enkeltstoffer om grundvandsmagasin og nettonedbør samt om det forurenede område. Inden dataoverførelsen gennemføres, kommer en advarselstekst om at funktionen vil overskrive eventuelt indtastede værdier i regnearket.

5.3.2 Forureningsdata

Forureningsdata, dvs. de teoretiske porevandskoncentrationer for forurening med benzin- eller olieblandinger, er overført til grundvand-olie-modulet og kan ikke ændres. Kun ved ændringer af jordkoncentrationer i **Olie & benzin** vil der ske ændringer af de anvendte forureningsdata.

Resultaterne vises efter indtastning af oplysninger om det forurenede område, nedbørsdata og grundvandsmagasin.

Beregning: Grundvand	Data for for	rurening er	overført fra fu	igacitetsmo	odulet for oliesto	ffer
Målepunkt	JP-01			Default	0	dage ⁻¹
Dato	25-10	25-10-2012		rydningsko	nstant V	
Fri fase?	N	Nej		nedbrydning	gs	dage ⁻¹
Anvendt Brugerdata?	N	Nej		stant (alle s	toffer)	_1
	Porevand	Trin 1	Trin 2	Trin 3	Grundvands-	Overskridelse
	s-konc	C1	C2	C3	kriteriet	af kriteriet
BTEX'er	pgn	pgn	pgn	рул	pgn	Gange
Benzen	0,02	0,01	0,00	0,00	1	Nej
Toluen	0,01	0,00	0,00	0,00	5	Nej
Ethylbenzen	0,01	0,00	0,00	0,00		
Sum Xylener	0,01	0,00	0,00	0,00		
Sum Xylener + ethylbenzen	0,02	0,01	0,00	0,00	5	Nej
Naphthalen	1,48	0,64	0,33	0,33	1	Nej
Kulbrintefraktioner	•					
C ₆ -C ₁₀	21,34	9,22	4,74	4,74		
C ₁₀ -C ₁₅	259,34	112,03	57,60	57,60		
C15-C20	0,53	0,23	0,12	0,12		
C ₂₀ -C ₃₅	0,00	0,00	0,00	0,00		
Sum af kulbrinter	284,07	122,71	63,09	63,09	9	7,0
Alkylbenzener, aromatiske kulbrinter						
C9-C10 aromatiske kulbrinter	20,96	9,06	4,66	4,66	1	4,7
Polyaromatiske Kulbrinter (PAH)	•					
Fluoranthen	0,03	0,01	0,01	0,01	0,1	Nej
Benzo(a)pyren	0,00	0,00	0,00	0,00	0,01	Nej
Benzo(b+k)fluoranthen	0,00	0,00	0,00	0,00		
Benzo(ghi)perylen	0,00	0,00	0,00	0,00		
Indeno(1,2,3-cd)pyren	0,00	0,00	0,00	0,00		
Sum af 4 PAH`er	0,00	0,00	0,00	0,00	0,1	Nej
NSO-forbindelser						
Benzo(b)thiophen	1,01	0,44	0,22	0,22		
Dibenzofuran	0,00	0,00	0,00	0,00		
Dibenzothiophen	0,01	0,00	0,00	0,00		
Acridin	0,00	0,00	0,00	0,00		
Carbazol	0,11	0,05	0,02	0,02		
Anilin	0,85	0,37	0,19	0,19		
Dimethyldisulfid	0,88	0,38	0,20	0,20		
Sum af NSO-forbindelser	2,86	1,24	0,64	0,64		

Trin 3

Da der ikke foreligger nedbrydningsdata for de fleste af de repræsentative kulbrintefraktioner og modelstoffer, er nedbrydningskonstanterne sat til nul og de beregnede grundvandskoncentrationer i trin 3 er dermed lig koncentrationerne i trin 2. I dataarket kan der dog aflæses en række parametre, såsom retardations-koefficient, R, og gennemsnitsstofhastighed med sorption.

Såfremt der ønskes foretaget følsomhedsberegning af konsekvenser ved nedbrydning i grundvandszone, kan der indsættes én nedbrydningskonstant, som gælder for alle oliestoffer. Derfor giver beregninger med nedbrydning ingen realistisk fordeling af koncentrationer af oliestoffer i grundvandszonen nedstrøms en forurening.

Ved indtastning af en nedbrydningskontant vises en rød advarsel.

Beregning: Grundvand	Data for for	urening er	overført fra fu	gacitetsm	odulet for oliestoff	er
Målepunkt	JP-01		Default 0			dage ⁻¹
Dato	25-10-	25-10-2012		rydningsko	onstant	
Fritase?	Nej		nedbrydnings 0,001			dage ⁻¹
Anvendt Brugerdata?	Ja		kons	stant (alle s	stoffer)	_
	Porevand	Trin 1	Trin 2	Trin 3	Grundvands-	Overskridelse
	s-konc ua/l	C₁ uɑ/l	C ₂ uo/l	C₃ uɑ/l	kriteriet ug/l	Gange
BTEX'er		P 3		P.5		
Benzen	0,02	0,01	0,00	0,00	1	Nej
Toluen	0,01	0,00	0,00	0,00	5	Nej
Ethylbenzen	0,01	0,00	0,00	0,00		
Sum Xylener	0,01	0,00	0,00	0,00		
Sum Xylener + ethylbenzen	0,02	0,01	0,00	0,00	5	Nej
Naphthalen	1,48	0,64	0,33	0,22	1	Nej
Kulbrintefraktioner					-	
C ₆ -C ₁₀	21,34	9,22	4,74	2,90		
C ₁₀ -C ₁₅	259,34	112,03	57,60	8,05		
C ₁₅ -C ₂₀	0,53	0,23	0,12	0,04		
C ₂₀ -C ₃₅	0,00	0,00	0,00	0,00		
Sum af kulbrinter	284,07	122,71	63,09	11,42	9	1,3
Alkylbenzener, aromatiske kulbrinter						
C9-C10 aromatiske kulbrinter	20,96	9,06	4,66	2,87	1	2,9
Polyaromatiske Kulbrinter (PAH)						
Fluoranthen	0,03	0,01	0,01	0,00	0,1	Nej
Benzo(a)pyren	0,00	0,00	0,00	0,00	0,01	Nej
Benzo(b+k)fluoranthen	0,00	0,00	0,00	0,00		
Benzo(ghi)perylen	0,00	0,00	0,00	0,00		
Indeno(1,2,3-cd)pyren	0,00	0,00	0,00	0,00		
Sum af 4 PAH`er	0,00	0,00	0,00	0,00	0,1	Nej
NSO-forbindelser						
Benzo(b)thiophen	1,01	0,44	0,22	0,15		
Dibenzofuran	0,00	0,00	0,00	0,00		
Dibenzothiophen	0,01	0,00	0,00	0,00		
Acridin	0,00	0,00	0,00	0,00		
Carbazol	0,11	0,05	0,02	0,01		
Anilin	0,85	0,37	0,19	0,13		
Dimethyldisulfid	0,88	0,38	0,20	0,14		
Sum af NSO-forbindelser	2,86	1,24	0,64	0,43		

5.3.3 Navigation, nulstilling og print

Navigeringen til andre moduler og inden for modulet foregår ved hjælp af knapperne i toppen af arket, som beskrevet i kapitel 2 og illustreret i **Fejl! Henvisningskilde ikke fundet.**.

Ved at klikke på knapperne yderst til højre kan de øvrige fagmoduler vælges (**Indeklima-olie**, **Udeluft-olie** eller **Vertikal transport-olie**).

Grundvandskoncentrationen i det først betydende magasin - oliestoffer Lokaliteten						Dataark	Indeklima-Olie
Lokalitetsnavn:	Renseri			Overfør værd	lier	Udskrift	Udeluft-Olie
Adresse:	Stationsvej 2	Postnr./By:	3450	Nulstil værdi	ier	Veiledning	Vertikal trans-Olie
Lokalitetsnummer:	255-2651	Projektnr:	588889	Wursch voerun		vejedning	Ventikar trans-One

I toppen af arket kan der navigeres tilbage til **Oliestoffer**, hvor koncentrationer kan ændres. **Overfør værdier** betyder, at der kan overføres oplysninger om jordlagstyper og -tykkelser samt om det forurenede område fra modul for grundvand for **Enkeltstoffer**. Inden dataoverførelsen
gennemføres, kommer en advarselstekst om at funktionen vil overskrive eventuelt indtastede værdier i regnearket.

Nulstil værdier er beskrevet i afsnit 2.5 og betyder, at alle indtastede data, f.eks. de valgte aquifertyper og det forurenede område, nulstilles. Grundvands- eller porevandskoncentrationer, der er overført fra **Olie & Benzin**, nulstilles ikke. Såfremt der er indtastet nye jordtyper i egne lister, vil disse selvfølgelig ikke blive slettet, idet disse data kun kan slettes, mens menuen for egne lister er åben, jf. afsnit 2.3.

Ved at klikke på **Dataark** vises en oversigt over de anvendte værdier og parametre og evt. mellemregninger.

Ved at klikke på **Vejledning** hentes en kort vejledning i, hvordan de enkelte data indtastes. For en mere teoretisk baggrund henvises til Miljøstyrelsens vejledning nr. 7, 1998, appendiks 5.3 /6/.

Ved at klikke på **Udskrift** åbnes for et ark som kan udskrives som projektdokumentation enten til den ønskede printer eller som pdf, jf. Figur 5.3.

Ved at klikke på **Udskriv ark** udskrives til brugerens standardprinter. For at vælge andre printer, opsætninger m.v. skal der anvendes Excel´s FILE/Print tab.

Grundvand-Olie			Udskriv ark
Lokaliteten			
Navn:	Renseri	Lokalitetsnr.: 255-2651	Luk
Adresse:	Stationsvej 2	Postnr/by: 3450	
Matrikel nr.:	Udenbys nr. 12f	Projekt nr.: 588889	
Note	Kontrol af måledata		

Ved at klikke på Luk navigeres tilbage til modulet for Grundvand - oliestoffer.

FIGUR 5.3

UDSKRIFT FOR GRUNDVANDSBEREGNING FOR OLE & BENZIN.

5.4 Indeklima - Oliestoffer

Efter indtastning af lokalitetsdata på opstartsiden og forureningsdata i fugacitetsmodulet, kan der foretages en beregning af konsekvenser for indeklimaet, jf. appendiks 5.3 i MST´s oprydnings-vejledning fra 1998 /6/, med opdateringer fra 2011.

Indledningsvis skal man vælge mellem to beregningssituationer:

- beregningerne for bygninger med et betondæk (enten kælderdæk eller terrændæk)
- eller beregninger for bygninger med krybekælder

5.4.1 Beregninger for bygninger med et betondæk

5.4.1.1 Indtastning af jordlag

Den umættede zone som forureningen skal afdampe gennem skal indledningsvis beskrives. Den umættede zone medtager både de jordlag, som findes mellem forureningen og betondækket, et eventuelt kapillarbrydende lag og en eventuel membran.

Der kan indtastes oplysninger for en membran og et kapillarbrydende lag og op til 4 forskellige jordlag.

For hvert lag vælges typen som standardtyper ved at klikke på knappen [Membran], [Kapillarbrydende lag] eller [Jordtype]. Alternativt kan der vælges lag fra [Egen Liste], eller der kan manuelt indtastes værdier i de hvide felter.

Anvendelse af standardliste, vedligeholdelse af egen liste, bemærkningsfelt og nulstilling er beskrevet i afsnit 2.

For membran og det kapillarbrydende lag indtastes tykkelsen i henholdsvis mm og meter. For jordlagene indtastes dybden som jordlaget går til. Dybden angives i meter under gulvet. For det øverste jordlag er det muligt at indtaste dybden målt fra overkanten af jordlaget. Tykkelsen af de individuelle lag vises automatisk, som f.eks. vist ovenover, hvor lerlaget fortsætter til 4,0 m u. gulv under et 0,2 m lag kapillarbrydende lag og et dampspærre. Tykkelsen af lerlaget er 3,8 m herunder er et sandlag med en tykkelse på 0,5 m ned til målepunktet. Den samlede lagtykkelse er 4,5 m.

Såfremt der ikke vælges en jordtype, eller der indtastes en fejl ved dybdeangivelse, ses fejlmeddelelser.

Influenszone og m	Bemærkning									
	Jordtype/Membran	Jordlag Dybde fra m u.gulv	Jordlag Dybde til m u.gulv	Lag- tykkelse (m)	Poreluft- volumen VL	Vand- indhold V _V	Samlet porøsitet e=VL+VV	Volumen afjordskellet Vj	Materiale- konstant	
Membran Egen liste	Dampspærre			0,15 0,1	mm				7E-5-8.0E-5 8,8E-05	
Kabilarbrydende lag Egen liste	0			0,2	0	0	0	1	0,0000	FEJLI Typeangivelse mangler
Jordparametre										
Jordtype Egen liste	Ler	0,2001	4	3,7999	0,00 - 0,25 0,1	0,20 - 0,40 0,3	0,4	0,6	0,0079	Bemærkning
Jordtype Egen liste			3,5	-0,5			0	1	0,0000	FEJLI Jordtype mangler
Jordtype Egen liste				0			0	1	0,0000	
Jordtype Egen liste				0			0	1	0,0000	
		Samlede	lagtykkelse	FEJL!! Der 3,5	er jordlag med m	l negativ højde Saml	e let materialel	konstant K _W	0,0021	

Bemærkningsfelterne kan anvendes til en beskrivelse af de valgte inputdata.

5.4.1.2 Indtastning af oplysninger om Bygningsdata

Terrændæk

Typen af terrændæk indtastes, enten ved at vælge en standardtype eller ved at vælge et terrændæk fra [Egen Liste]. Desuden indtastes betondækkets tykkelse.

Bygningsdata	Vælg type af terrændæk, eller indtast egen data	Bemærkning
Terrændæk	Betontype Egen liste	Vis detailoplysninger
Type afterrændæk	Uarmeret beton (beton 10)	
Betontværsnit	h _b 80 mm	

Klik på knappen [Vis detailoplysninger] giver mulighed for at se og redigere i oplysningerne om terrændækket.

Bygningsdata		Vælg type af terrændæk, eller indtast egen data								
Terrændæk		Betontype Egen liste								
Type afterrændæk	L	Jarmeret beto	n (beton 10)							
Betontværsnit	hb	80		mm						
Relativ luftfugtighed	RF	60		%	Armeringsdiameter	da		mm	Ind_da	
Vand/cement-tallet	v/c	0,82			Armeringskonstant	k			Ind_k	
Cementindhold	СМ	220		kg/m ³	Afstand mellem armeringsjern	Δb		mm	Ind_Db	
Svindtid	t _s	7300		døgn	Dynamisk viskositet af luft	μ	1,80E-05	kg/(m * s)	Ind_my	
Elasticitetskoeff. Beton	E₀	20000		MPa	Elasticitetskoeff. Stål	E,	210.000	MPa	Ind_Es	
Materialekonst. for beton	Nb	0,002								

Bygningsdata

Bygningsdata er opdelt i en "indtastede bygningsdata" og "beregnede bygningsdata. Under bygningsdata indtastes oplysninger om det eller de rum, som risikovurderingen foretages i forhold til herunder anvendelse højde, brede og længde samt luftskifte og trykforskel over terrændækket.

Under beregnede data gives de beregnede oplysninger om revnedannelse i terrændækket og volumenstrømmen gennem terrændækket. Såfremt disse parametre er målt i felten, er det muligt at indføre dem i beregningerne.

Bygningsdata	Indtast bygnings data		Beregnede bygningsdata		Anvend beregnede bygningsdata, eller indtast målte data			Bemærkning		
Rumtype/anvendelse		Stue og	køkken							
Loftshøjde	Lh		2,8	m	Revnevidde	W	0,592933		mm	
Luftskifte	L _s	8,3E-05		S '	Gnmsn. revneafstand	I_{w}	#VALUE!		mm	
Gulvbredde	l _b		10	m	Total revnelængde	I_{tot}	28		m	
Gulvlængde	$-\mathbf{h}$		4	m	Vol. strøm gennem beton	qb	0,001689		m³/s	
Trykforskel over betondæk	ΔP	5		Pa	Vol. strøm gennem beton pr. m²	Qb	4,22E-05		m³/(s · m²)	

Bemærkningsfeltet kan anvendes til en beskrivelse af de valgte inputdata.

5.4.2 Beregninger for bygninger med krybekælder

5.4.2.1 Indtastning af jordlag

Den umættede zone, som forureningen skal afdampe gennem, skal indledningsvis beskrives. Den umættede zone medtager både de jordlag som findes mellem forureningen og gulvet i krybekælderen, et eventuelt gulv i krybekælderen og en eventuel membran.

Der kan indtastes oplysninger for en membran og et kapillarbrydende lag og op til 4 forskellige jordlag.

For hvert lag vælges typen som standardtyper ved at klikke på knappen [Betontype], [Membrantype], eller [Jordtype]. Alternativt kan der vælges lag fra [Egen Liste], eller der kan manuelt indtastes værdier i de hvide felter.

Anvendelse af standardliste, vedligeholdelse af egen liste, bemærkningsfelt og nulstilling er beskrevet i afsnit 2.

For beton- og membrantype indtastes tykkelsen i mm. For jordlagene indtastes dybden som jordlaget går til. Dybden angives i meter under gulvet. Tykkelsen af de individuelle lag vises automatisk, som f.eks. vist ovenover, hvor sandlaget fortsætter til 2,0 m u. gulv under et klaplag og et dampspærre. Tykkelsen af sandlaget er 1,9 m herunder er et lerlag med en tykkelse på 2,5 m ned til målepunktet. Den samlede lagtykkelse er 4,5 m.

Såfremt der ikke vælges en jordtype, eller der indtastes en fejl ved dybdeangivelse, ses fejlmeddelelser.

Ventilleret kryk	pekælder									
Jordparametre og gulv i krybekælderen			Indtast data om krybekælderens gulv og om jordlag							Bemærkning
	Jordtype/Membran	Jordlag Dybde fra m u.gulv	Jordlag Dybde til m u.gulv	Lag- tykkelse (m)	Poreluft- volumen VL	Vand- indhold V _V	Samlet porøsitet ≈=VL+VV	Volumen afjordskellet VJ	Materiale- konstant	
Betontype Egen liste	Klaplag			80	mm				0,002	
Membrantype Egen liste				10	mm					Fejl! Typeangivelse man
Jordtype Egen liste	Sand	0,09	2	1,91	0,0 - 0,45	0,05 - 0,35 0,15	0,45	0,55	0,1095	
Jordtype Egen liste			1,9	-0,1			0	1	0,0000	FEJLI Jordtype mangler
Jordtype Egen liste				0			0	1	0,0000	
Jordtype Egen liste				0			0	1	0,0000	
		Samleo	le lagtykkelse	FEJL!! Der 1,9	er jordlag med m for jordlag	i negativ højd Sam	e let materiale	konstant K _W	0,017438	

Bemærkningsfelterne kan anvendes til en beskrivelse af de valgte inputdata.

5.4.2.2 Indtastning af oplysninger om Bygningsdata

Bygningsdata

Bygningsdata indeholder oplysninger om det ellerde rum, der er over krybekælderen, og dermed om det eller de rum, som risikovurderingen foretages i forhold til, herunder anvendelse højde, brede og længde samt luftskifte.

Bygningsdata		dtast data om etagen over krybekælderen	Bommetrying
Rumtype/anvendelse		Stue og Køkken	Demonkhing
Loftshøjde	L _h	3 m	
Luftskifte	Ls	,000083 s	
Gulvbredde	I _b	9 m	
Gulvlængde	h	5 m	

Bemærkningsfeltet kan anvendes til en beskrivelse af de valgte inputdata.

Krybekælder

Krybekælder indeholder oplysninger om krybekælderen herunder etageadskillelsen mellem krybekælder og opholdsrum, højde, brede og længde samt eventuelt luftskifte. Brede og længde sættes standardværdier til de samme værdier som under bygningsdata.

Luftskiftet for krybekælderen beregnes, så snart der er indtastet data for højde, brede og længde af krybekælderen, ligesom volumenstrømmen gennem etageadskillelsen mellem krybekælder og opholdsrum beregnes. Der beregnes ligeledes en reduktionsfaktor som er den samme som for etageadskillelsen, medmindre der indtastes værdier for luftskifte og volumenstrøm gennem etageadskillelsen.

Såfremt de indtastede data giver luftstrømme gennem etageadskillelsen, som er større end de luftstrømme, som enten er i krybekælderen eller i opholdsrummene, så kommer der advarsler.

Data for krybekælder		Indtast dat	ta om kryb	ekælde	ren	Bemærkning
Etageadskillelse		Træ med	d indskud	i		
Reduktionsfaktoren	R _{kr}	1				
Loftshøjde	L _h		0,5	m		
Gulvbredde	l _b	9		m		
Gulvlængde	- h	5		m		
Luftskifte	Ls	0,000498		ST		
Vol. strøm gennem loft i				_		
krybekælderen	q _{gv}	0,000249	0,1	mª/s	FEJL: Luftstrømmen igennem etageadskillelsen er større end luftskiftet i krybekælderen	
Reduktionsfaktor beregn.	R _{kr}	0,00249			FEJL: Luftstrømmen igennem etageadskillelsen er større end luftudskiftet i beboelsen	

5.4.3 Samlet for begge beregninger

5.4.3.1 Beregning af indeluftbidrag for bygninger med terrændæk

Det beregnede bidrag til indeluften vises, så snart der er indtastet data for jordlagene, idet koncentrationerne automatisk hentes fra fugacitetsmodulet.

5.4.4 Navigation, print og nulstilling af værdier

Navigeringen til andre moduler og inden for modulet foregår ved hjælp af knapperne i toppen af arket, som beskrevet i kapitel 2 og illustreret i

Ved at klikke på knapperne yderst til højre kan fagmodulerne vælges (**Grundvand**, **Udeluft** eller **Vertikal transport**) og dermed hvilke andre risikovurderinger, der eventuelt skal udføres.

Beregning af indeklin i bygning med terrær	Oliestoffer	Dataark	Grundvand-Olie			
Lokalitetsnavn:	oKford rens			Overfør værdier	Udskrift	Udeluft-Olie
Adresse:	Peter Libsvej	Postnr./By:	2610/Rødovre	Nulstil værdier	Veiledning	Vertikal trans-Olie
Lokalitetsnummer:	122-00502X	Projektnr:	A07412-A.01	Transar vier area		
	For krybekælder: benyt k	nap til højre		Krybekælder		

I toppen af arket kan der navigeres tilbage til **Oliekomponenter**, hvor koncentrationer kan ændres.

Ved at klikke på **Dataark** vises en oversigt over de anvendte værdier og parametre og evt. mellemregninger.

Nulstil værdier er beskrevet i afsnit 2.5 og betyder, at alle indtastede data f.eks. valgte aquifertype og indtastede værdier som baggrundskoncentrationer og "Test af andre værdier" nulstilles. Poreluftskoncentrationer der overført fra **Olie&Benzin** nulstilles ikke. **Overfør værdier** betyder, at der kan overføres oplysninger om jordtyper, kapilarbrydende lag bygningsdata m.v. fra modul Enkeltstoffer. Inden dataoverførelsen gennemføres kommer en advarselstekst om at funktionen vil overskrive eventuelt indtastede værdier i regnearket.

Ved at klikke på **Vejledning** hentes en kort vejledning i, hvordan de enkelte data indtastes. For en mere teoretisk baggrund henvises til Miljøstyrelsens vejledning nr. 7, 1998, appendiks 5.6 /6/ og Miljørappport Opgradering af JAGG indeklimamodul /2/.

Der kan generes en udskrift af beregningen til projektdokumentation ved at klikke på **Udskrift**, jf.Figur 5.4. Ved at klikke på **Luk** navigeres tilbage til modulet for **Indeklima**.

Detail

terrændæk		Uarmeret beton (beton 10)	Uarmeret beton (beton 10)
luftfugtighed	RF	60	
ement-tallet	v/c	0,82	
indhold	CM	220	
	t.	7300	
lekonst. for beton	Nb	0,002	
gsdiameter	d _a		
gskonstant	k		
mellem gsiern	Δb		
sk viskositet af	μ	0,000018	
etskoeff. Beton	E _b	20000	
etskoeff. Stål (MPa)	E _s	210000	
nede data om terra	ændæk		
		Bereanede	Indtastede

		væruter	14
nstant for terrændæk	KN	0,025	t
	w	0,592932959	Γ
neafstand	l _w	#VALUE!	Γ
ængde	Itot	28	Г
ennem beton	q _b	0,001688889	t
bygningen	qbyg	0,00	92

FIGUR 5.4

EKSEMPEL PÅ UDSKRIFT FOR INDEKLIMA BEREGNING FOR BYGNINGER MED TERRÆNDÆK. (SIDE 2 MED BEMÆRKNINGER ER IKKE VIST.)

5.5 Udeluft - Oliestoffer

I dette modul kan der foretages en beregning af konsekvenser for udeluft, jf. appendiks 5.3 i MST´s Oprydningsvejledning fra 1998, baseret på teoretiske poreluftkoncentrationer for forurening med benzin- eller olieblandinger. De teoretiske poreluftkoncentrationer for en række repræsentative kulbrintefraktioner og modelstoffer er beregnet i fugacitetsmodulet **Olie & Benzin**.

5.5.1 Indtastning af jordtype og oplysninger om det forurenede område

Fremgangsmåden er den sammen som for udeluftmodulet for Enkeltstoffer, jf.o.

Ved at vælge knappen **Overfør værdier** kan der hentes oplysninger fra modulet for udeluft for enkeltstoffer om jordlagstyper og -tykkelser samt om det forurenede område. Inden

dataoverførelsen gennemføres, kommer en advarselstekst om, at funktionen vil overskrive eventuelt indtastede værdier i regnearket.

Man kan vælge op til 4 forskellige jordlag, enten som standardjordtyper fra listen, eller man kan oprette eller hente egenskaber fra egen liste ved at markere den ønskede jordtype.

Det er også muligt at oprette og anvende egne "**Jordtyper**" ved at klikke på knappen "**Egen liste**", jf. 2.3.1.

Desuden kan der indtastes oplysninger om længden af det forurenede område og opblandingshøjde, jf. afsnit o.

5.5.2 Forureningsdata

Forureningsdata, dvs. de teoretiske poreluftkoncentrationer for forurening med benzin- eller olieblandinger, er overført til udeluft-olie-modulet og kan ikke ændres. Kun ved ændringer af jordkoncentrationer i **Olie & Benzin** vil der ske ændringer af de anvendte forureningsdata.

Resultaterne vises efter indtastning af jordlagene.

Beregning: Udeluft	Data for olieforureningen er overført fra fugacitetsmodulet								
Målepunkt Dato Fri fase? Anvendt Brugerdata?	JP-01 25-10-2012 Nej Nej								
	Porelufts- konc.	Totalt bidrag til udeluft	Afdampnings- kriterie	Over skridelse af kriteriet					
	mg/m³	mg/m³	mg/m³	gange					
BTEX'er Benzen	3 225	1.09E-05	1 30E-04	Nei					
Toluen	0.897	2.78E-05	0.4	Nei					
Ethylbonzon	0,037	8 13E 06	0,4	IVEJ					
Sum Yulonor	0,202	6.94E.06							
	0,241	0,542-00	0.1	N:					
∑Xylener+Ethylbenzen	0,522	1,51E-05	0,1	Nej					
Naphtalen	0,533	1,43E-05	0,04	Nej					
Kulbrintefraktioner C ₈ -C ₁₀	8416.624	2.39E-01							
C10-C15	149.671	3.33E-03							
C ₁₅ -C ₂₀	1.450	2.60E-05							
C20-C25	5 000	4 07E-10							
Sum af kulbrinter	8572 59	2.42E-01	0.1	24					
	0072,00	2,422 01	0,1	2,7					
Aromatiske kulbrinter C ₉ -C ₁₀ aromatiske kulbr.	139,795	3,63E-03	0,03	Nej					

5.5.3 Navigation, print og nulstilling af værdier

Navigeringen til andre moduler og inden for modulet foregår ved hjælp af knapperne i toppen af arket, som beskrevet i kapitel 2 og illustreret i **Fejl! Henvisningskilde ikke fundet.**.

Ved at klikke på knapperne yderst til højre kan de øvrige fagmodulerne vælges (**Grundvand-olie**, **Indeklima-olie** eller **Vertikal transport-olie**).

Beregning af udeluftkon	centrationen - Oliestoffer	Oliestoffer	Dataark	Grundvand-Olie			
Lokalitetsnavn:	Renseri			Overfør værdier	Udskrift	Indeklima-Olie	
Adresse:	Stationsvej 2	Postnr./By:	3450	Nulstil værdier	Veiledning	Vertikal trans-Olie	
Lokalitetsnummer:	255-2651	Projektnr:	588889				

I toppen af arket kan der navigeres tilbage til **Oliestoffer**, hvor koncentrationer kan ændres.

Overfør værdier betyder, at der kan overføres oplysninger om jordlagstyper og -tykkelser samt om det forurenede område fra modul for Udeluft for **Enkeltstoffer**.

Nulstil værdier er beskrevet i afsnit 2.5 og betyder, at alle indtastede data, f.eks. de valgte jordtyper og – dybder, nulstilles. Poreluftskoncentrationer, der er overført fra **Olie & Benzin**, nulstilles ikke. Såfremt der er indtastet nye jordtyper i egne lister, vil disse selvfølgelig ikke blive slettet, idet disse data kun kan slettes, mens menuen for egne lister er åben, jf. afsnit 2.3.

Ved at klikke på **Dataark** vises en oversigt over de anvendte værdier og parametre og evt. mellemregninger.

Ved at klikke på **Vejledning** hentes en kort vejledning i, hvordan de enkelte data indtastes. For en mere teoretisk baggrund henvises til Miljøstyrelsens vejledning nr. 7, 1998, appendiks 5.3 /6/.

Ved at klikke på **Vejledning** hentes en kort vejledning i, hvordan data indtastes. Ved at klikke på **Vejledning** hentes en kort vejledning i, hvordan de enkelte data indtastes. For en mere teoretisk baggrund henvises til Miljøstyrelsens vejledning nr. 7, 1998, appendiks 5.3 /6/.

Ved at klikke på **Udskrift** åbnes for et ark som kan udskrives som projektdokumentation enten til den ønskede printer eller som pdf, jf. Figur 5.5.

Ved at klikke på **Udskriv ark** udskrives til brugerens standardprinter. For at vælge andre printer, opsætninger m.v. skal der anvendes Excel's FILE/Print tab.

Udeluft-Olie			Udskriv ark
Lokaiiteten	Renseri	Lokalitetsor : 255-2651	Luk
Adresse:	Stationsvej 2	Postnr/by: 3450	
Matrikel nr.:	Udenbys nr. 12f	Projekt nr.: 588889	
Note	Kontrol af måledata		

Ved at klikke på Luk navigeres tilbage til modulet for Udeluft - oliestoffer.

UGEIUIT-OIIE Lokaliteten Navn: <u>P</u> Adresse: S Matrikel nr.: <u>U</u> Note K	Renseri Stationsvej 2 Jdenbys nr. 12f Control af måledata		Lokalitetsnr.: Postnr/by: Projekt nr.:	255-2651 3450 14.233.00	Bemærkninger om jordlag	Kun sandmuld og sand
Jordparametre Kommentar p Jordlag, Dybde fra m Jordlag, Dybde til m Jordtype Materialekonstant Samlet ækivalent jordlagtykk Det forurenede om Kommentar p	✓ Indtastede data Jordiag 1 0 n u.t. 0,2 Sandmuld 0,007	a (angives med fe Jordiag 2 0,2 0,5 Sand 0,1095 0,0321 m	d) Jordlag 3 Tykkelse af jo	Jordiag 4	Bemærkninger	Standard vilkår
zengde af det forurenede mråde Spblandingshejde Spblandingshejde/ ængde Beregning: Udeluft	I 100 h/l 8,0 h/l 0,08 t Målepunkt JP-01	m m Dato 25-06-2013	Fri fase?	Anvendt brugerda Nej		
Ollestofgrupper BTEX'er Benzen Toluen Ethylbenzen Sum Xylener Zxylener+Ethylbenzen Naphtalen	Poreluftkonc. mg/m ³ 3,23 0,897 0,282 0,241 0,522 0,533	Total bidrag til udeluft mg/m ³ 1,09E-05 2,78E-05 8,13E-06 6,94E-06 1,51E-05 1,43E-05	Afdampnings kriteriet mg/m ³ 1,30E-04 0,4 0,1 0,04	Overskridelse gange Nej Nej Nej		
Kulbrintefraktioner Ce ^{-C} 10 C10 ⁻ C15 C15 ⁻ C20 C20 ⁻ C35 Sum af kulbrinter	8.420 150 1,45 5,0 8.570	0,239 0,0033 2,60E-05 4,07E-10 0,242	0,1	2,4		
Aromatiske kulbrinter C ₉ -C ₁₀ aromatiske kulbr. Beregningerne udført Firmanavn Navn/initialer J. Dato/Underskrift	140 NIRAS NAF	0,0036 Beregninge Kont Go	0,03 erne kontroll rolleret dkendt	Nej eret /godkendt		

FIGUR 5-5 UDSKRIFT FOR UDELUFTBEREGNING FOR OLIE & BENZIN

6. Problemløsning

JAGG 2.0 er udviklet til at køre under Excel 2007 /2010.

Der anbefales, at applikationerne (add-ins) ""Analyse ToolPak" og "Analyse ToolPak-VBA" er aktiveret.

I Microsoft Office XP kan kontrolfunktion-filen "**MSCOMCT2.OCX**" mangle, hvilket betyder, at visse funktioner ikke virker efter hensigten. Filen er en gemt ("hidden") fil, som bør ligge under c:\windows\system32. Filen kan downloades fra Microsoft <u>http://support.microsoft.com/kb/297381</u>.

Referencer

- /1/ Larsen, T.H. 2007. Opdatering af JAGG projektkatalog. Miljøstyrelsen. Miljøprojekt 1210.
- /2/ Bote, T.V., Glensvig, D., Ravnsbæk, N.D., Østergaard Hansen, B., Brendstrup, J., Vestergaard, M., Schondelmaier, A., Kristensen, A.T. og Buck, C. 2010. Opgradering af JAGG indeklimamodul. Miljøprojekt nr. XXXX. Miljøstyrelsen.
- /3/ Andersen, L. og Oberender, A. 2010. Opgradering af JAGG. Revision af fugacitetsberegninger, håndtering af fri fase og blandingsforureninger. Miljøprojekt nr. XXXX. Miljøstyrelsen.
- Christensen, A. G., Binning, P., Troldborg, M., Kjeldsen, P. og
 Broholm, M. 2010. Opgradering af JAGG. Vertikal transport ned til førstkommende betydende magasin. Miljøprojekt nr. XXX. Miljøstyrelsen.
- /5/ Videncenter for Jordforurening. 2008. Teknik og administration nr. 2. SprækkeJAGG -Regneark til risikovurdering af sprækker i moræneler.
- /6/ Miljøstyrelsen. 1998. Vejledning nr. 7. Oprydning på forurenede lokaliteter Appendikser.

Systemnavn Oprindelsessted	C. Du vali C. Du vali D. Du vano D. Du va	O Chu Jinin, J. Ingul, Jordan Myrruik, O. Cu Juniu, J. Ingul, Jordan Myrruik, O. Cu Juniu, J. Ingul, D. Cu Juniu, J. O. Bergins, D. Cu Juniu, Q. Januar, Bergins, D. Cu Juniu, Q. Januar, Bergins, D. Cu Juniu, Q. Januar, Bergins,	0.0.1.4. Bodd 0.0.1.2. Bodd 0.0.1. 0.0.1.0.000000 Egenation 0.0.0.000000 Egenation 0.0.0.0000 Egenation 0.0.0.000 Egenation 0.0.000 Egenation 0.0.0000 Egenation 0.0.0000 Egenation 0.0.000 Egenation 0.	Spintnam Optimization Optimization 0. double addressing 0. double addressing 0. double addressing 0. double addressing 0. double addressing 0. double addressing 0. double addressing 0. double addressing 0. double addressing 0. double addressing 0. double addressing 0. double addressing 0. double addressing 0. double addressing 0. double addressing 0. double addressing 0. double addressing 0. double addressing	Konsentravun Ort Vorgentravun O. O. vord. v. J. J. N. Berguns O. O. vord. C. D. Berguns D. O. vord. M. O. energies	Kontentinuona Oprofessasta dol 1. 0.0	Aconstitutional Confidence of 0. August Carlo (Control (Contro) (Control (Contro) (Control (Contro)
alag for grundvand	Register Reserveration AUXIVILIAR AUXIVILIARIA Register Reserveration AUXIVILIARIA AUXIVILIARIA Consolidition AUXIVILIARIA Register Reserveration AUXIVILIARIA Consolidition AUXIVILIARIA Register Reserveration AUXIVILIARIA Register Reserveration AUXIVILIARIA	All Fordenties Endenties Endenties <thendentis< th=""> <thendenties< th=""> <thendenti< th=""><th>Matcher A m2 m2 m3 <th< th=""><th>UNDVAND (Kitldestyrtekonstruttion - thirta) Gat Gat G</th><th>UNDVAND (Kildestyrketoncentration - trin2a) <u>and</u> <u>and</u></th><th></th><th>UNUDVAND (Konc. med scyclion og nedbrydning - trins) strin <t< th=""></t<></th></th<></th></thendenti<></thendenties<></thendentis<>	Matcher A m2 m2 m3 m3 <th< th=""><th>UNDVAND (Kitldestyrtekonstruttion - thirta) Gat Gat G</th><th>UNDVAND (Kildestyrketoncentration - trin2a) <u>and</u> <u>and</u></th><th></th><th>UNUDVAND (Konc. med scyclion og nedbrydning - trins) strin <t< th=""></t<></th></th<>	UNDVAND (Kitldestyrtekonstruttion - thirta) Gat Gat G	UNDVAND (Kildestyrketoncentration - trin2a) <u>and</u>		UNUDVAND (Konc. med scyclion og nedbrydning - trins) strin strin <t< th=""></t<>

Bilag 1: Eksempel på dataark (grundvand)

Manual for program til risikovurdering – JAGG 2.0

Denne brugermanual beskriver hvordan der udføres beregninger i JAGG 2.0, dvs. indtastning af data og udskrivning af resultaterne. Den teoretiske baggrund for beregninger findes i de respektive baggrundsrapporter og i Miljøstyrelsens vejledninger nr. 6 og 7 fra 1998 om oprydning på forurenede lokaliteter.

I JAGG 2.0 kan der foretages beregninger af fugacitet og vertikal tranport i den umættede zone samt risikovurdering over for grundvand, udeluft og indeklimaet. Ligeledes kan der med grundlag i olieindhold i jordprøver foretage fugacitetsberegninger af stofsammensætning i porevand og poreluft. De teoretiske olieprofiler (stofsammensætninger) i porevand og poreluft kan overføres til tilsvarende beregnings moduler for grundvand vertikal tranport i den umættede zone samt risikovurdering over for grundvand, udeluft og indeklimaet.

Strandgade 29 DK - 1401 København K Tlf.: (+45) 72 54 40 00

www.mst.dk