

Ministry of Environment of Denmark Environmental Protection Agency

PFASs and PFAS free alternatives in the Electronics and Energy sector A summary

January 2024

Publisher: The Danish Environmental Protection Agency

Editors: Royal HaskoningDHV

ISBN: 978-87-7038-534-3

The Danish Environmental Protection Agency publishes reports and papers about research and development projects within the environmental sector, financed by the Agency. The content of this publication do not necessarily represent the official views of the Danish Environmental Protection Agency. By publishing this report, the Danish Environmental Protection Agency expresses that the content represents an important contribution to the related discourse on Danish environmental policy.

Sources must be acknowledged

Contents

1.	Introduction	4
2.	Data collection	4
3.	Results	5
3.1	Manufacturing, import and export	5
3.1.1	Electronics and semiconductor sectors – PFAS volumes and trends	5
3.1.2	Energy sector – PFAS-volumes and trends	6
3.2.	Uses	7
3.2.1.	Introduction	7
3.2.2.	Identified uses in the electronics and semiconductor sectors	7
3.2.3.	Identified uses in the energy sector	9
3.3.	Substance identity	9
3.4.	Emission characterisation	10
3.4.1.	Introduction	10
3.4.2.	Emissions in the electronics (including semiconductor) and energy sectors	11
3.5.	Alternatives	12
3.5.1.	Introduction	12
3.5.2.	Alternatives in the electronics sector	13
3.5.3.	Alternatives in the semiconductor sector	13
3.5.4.	Alternatives in the energy sector	13
3.6.	Economic impacts	14
3.7.	Social impact	15
Referen	ices	16
Glossa	у	20
1.	Appendix - Trends in the energy sector	21
2.	Appendix - list of identified PFAS	25
3.	Appendix - Non-PFAS alternatives	37

1. Introduction

Per- and polyfluoroalkyl substances (PFASs) are a group of thousands of synthetic chemicals that are used widely in the EU as well as in the rest of the world. PFASs are, or ultimately transform into, persistent substances, leading to irreversible environmental exposure and accumulation.

The authorities of five EU countries, The Netherlands, Denmark, Germany, Sweden and Norway jointly prepared a proposal for the restriction of PFASs under the Registration, evaluation, authorisation and restriction of chemicals (REACH) regulation (<u>REACH Regulation</u> (<u>EC</u> <u>1907/2006</u>)) which became publicly available on the 7th of February 2023¹. The proposal was based on available data in literature and data collected from stakeholders in a call for evidence, a targeted consultation and a second consultation. For several sectors, data was collected on, amongst others, the manufacturing, import and export, uses, types, properties, and emissions of PFASs. Also, the emissions to the environment as well as alternatives that are available on the market and socio-economic impacts were assessed.

In this summary report, data that was collected for the electronics, semiconductor, and energy sectors from literature, the call for evidence and the targeted consultation is presented. Data from the second consultation is included on alternatives and where specifically mentioned in the present report.

2. Data collection

Preparation of main report based on call for evidence, literature search and survey

In the summer of 2020, a call for evidence was launched in which stakeholders were invited to provide data. The call for evidence was followed by data collection specifically targeted at the electronics (including semiconductors) and energy sectors between March and May of 2021. Data was collected from literature, websites, databases, a survey using a questionnaire tailored to the sectors, and via in depth interviews with several stakeholders. Questions included in the survey and interview focussed on uses, tonnages, applied substances, alternatives, and socio-economic impact. Stakeholders were consulted directly or through sector organisations including:

SEMI	Global industry association representing the electronics manufacturing and de- sign supply chain
ESIA	European semiconductor industry association
IPC	Global organisation that supports the quality and reliability of electronics manu- facturing
Plastics Europe	Trade association representing plastic manufactures
Digital Europe	Representing the digital technology industry in Europe
JBCE	Japanese Business Council Europe
Hydrogen Europe	Association representing the European hydrogen and fuel cell sector

The information was used to draft a main report: Annex XV Restriction Report, PFASs in the electronics and energy industry, September 2021 (confidential).

Update of main report based on second stakeholder consultation

A first summary report, based on the main report, was drafted, and made available to stakeholders in the summer / autumn of 2021. Based on the summary report, stakeholders were

¹ <u>All news - ECHA (europa.eu)</u>

asked to clarify remaining questions on tonnages, emissions, use conditions, socio-economic information, and alternatives. The main report was updated to include data on alternatives from the second consultation.

Second summary report (this report)

This second summary report includes data for the electronics and semiconductor sectors combined, and for the energy sector separately. Data on alternatives are presented separately for the electronics, semiconductors and energy sectors (Appendix 3, Table A, B, C). Data presented in this report may slightly differ from the data in the restriction proposal due to rounding and differences in starting points. As an example, in this report, volumes of PFASs identified as sidechain fluorinated polymers (SCFP) were grouped under polymers, whereas, for impact assessment in the restriction proposal, they were included in the group of non-polymers.

3. Results

3.1 Manufacturing, import and export

3.1.1 Electronics and semiconductor sectors – PFAS volumes and trends

Table 1 provides the estimated volumes of PFASs used in the electronics and semiconductor sectors in the EEA, based on the stakeholder information for the year 2020. The provided volumes reflect estimates based on responses of 27 out of the 30 companies active in the sectors that reacted to the 2020 call for evidence, survey, and the second consultation.

TABLE 1. Estimated PFAS volumes used in the electronics and semiconductor sectors in the

 EEA

PFASs	Number of PFASs	Number of companies	Volume (t/y)
Non-polymers	61	10	830 – 1 500
Fluorinated gases	12	*	140
Polymers	54	22	1 600 – 4 600
Total	127	27	2 400 – 6 200

* number of companies unknown

The non-polymers listed by stakeholders in Table 1 consist of 79% non-ionic and 18% ionic PFASs, with 3 % not further specified. The subdivision in non-ionic and ionic is relevant for the prediction of the behaviour of the PFASs in the environment. The main non-polymer ionic PFAS used in the electronics and semiconductor sectors is perfluorobutanesulfonate (PFBS), a surfactant. The non-polymer non-ionic PFASs are mainly solvent cleaners and heat transfer fluids. Of the polymers listed by stakeholders, 90% were fluoropolymers (FP), 9% were perfluoropolyethers (PFPE), and less that 1% were sidechain fluorinated polymers. The main polymeric PFASs used in the electronics and semiconductor sectors are polytetrafluoroethylene (PTFE), perfluoroalkoxy polymer (PFA), polyvinylidene fluoride (PVDF), polyethylenetetrafluoroethylene (ETFE), and fluorinated ethylene-propylene (FEP).

Based on the SPIN database², Glüge et al. (2020)³ estimated that around 4 000 tonnes of non-polymer PFASs were used in the electronics industry in Sweden, Finland, Norway, and

² SPIN is a publicly accessible database on the use of Substances in Products in the Nordic Countries. link: <u>http://spin2000.net/</u>

³ Glüge, Juliane & Scheringer, Martin & Cousins, Ian & DeWitt, Jamie & Goldenman, Gretta & Herzke, Dorte & Lohmann, Rainer & Ng, Carla & Trier, Xenia & Wang, Zhanyun, (2020). An overview of the uses of per- and polyfluoroalkyl substances (PFAS). 10.31224/osf.io/2eqac

Denmark between 2000 and 2017⁴. It is unclear whether this quantity includes PFAS-use in the semiconductor industry.

The SPIN database covers a period of 17 years and the four Nordic countries included in the database account for about 5.2% of the EEA by population⁵. By using the estimated tonnage per year and extrapolating to a population of 100%, it is possible to calculate an EEA quantity of 4 500 tonnes of PFASs per year on average. It is unknown if the PFAS use in the electronics industry in the Nordic countries is similar in other EEA countries.

The Urban Mine Platform indicated that a total weight of 12 500 000 tonnes of electrical and electronic equipment was placed on the EEA-market in 2020.⁶ Zhang et al., (2020)⁷ measured indoor dust concentrations of PFAS in urban, industrial, and e-waste dismantling areas. Using a concentration of PFASs in dust from e-waste dismantling areas of maximal 358 ng/g the following volume of PFASs can be estimated:

Max: 12.5*10⁶ (tonnes) * 358 ng/g = 4 475 tonnes PFAS⁸

This PFAS-volume is in line with the volume found by Wood $(2022)^9$ and Glüge et al., $(2020)^3$ for the electronics sector: respectively 3 500 and 4 000 tonnes PFASs.

Stakeholders did not provide specific information on volume trends of PFASs used in the sectors. However, growth in use of PFASs is expected because of their increasing application in electronics, electrical engineering, and electroactive (ferro-, pyro-, and piezoelectric) devices. Stakeholders expect sales of PFAS containing mixtures and articles in the electronics and semiconductor industry in the EEA to annually increase by more than 3% and in some cases up to 100%. However, there is no one-to-one relation between sales and the volumes or quantities of PFASs. No information was provided by stakeholders on relative market share of fluorinated electronics to the total electronics market in the EEA.

3.1.2 Energy sector – PFAS-volumes and trends

Table 2 provides the estimated volumes of PFASs used in the energy sector in the EEA based on stakeholder information for the year 2020. The provided volumes reflect estimates based on responses of 26 out of the 29 companies active in the energy sector that reacted to the 2020 call for evidence and the survey. In the second consultation, a PFAS-volume of 1 600 t/y was reported in batteries, which is also included in Table 2.

PFASs	Number of PFASs	Number of companies	Volume (t/y)
Polymers	20	24	2 600 – 3 000*
Non-polymers	10	5	250
Total	30	26	2 850 – 3 250

TABLE 2. Estimated PFAS volume used in the energy sector in the EEA

⁴ Note that the definition of PFASs used in Glüge et al. (2020) is largely consistent but not identical to the definition used in the restriction proposal (<u>All news - ECHA (europa.eu)</u>) This may lead to differences in tonnages of PFASs identified in the uses.

⁵ <u>https://countryeconomy.com/countries/groups/european-economic-area</u>

⁸ It should be noted that this number is probably an underestimation of the actual concentration in electronics since the concentration was measured in dust

⁹ <u>Wood, 2022: Fluoropolymer Product Group of PlasticsEurope. Update of market data for the socioeconomic analysis (SEA) of the European fluoropolymer industry. Final report. <u>https://fluoropolymers.plas-</u> <u>ticseurope.org/application/files/1216/5485/3500/Fluoropolymers_Market_Data_Update_-_Final_report_-</u> <u>May_2022.pdf</u></u>

⁶ <u>http://www.urbanmineplatform.eu/homepage</u>

⁷ Zhang Bo & Yuan He, Y., & Yingyan Huang, & Danhong Hong & Yiming Yao & Lei Wang & Wenwen Sun & Baoqin Yang, & Xiongfei Huang, & Shiming Song, & Xueyuan Bai, & Yuankai Guo, & Tao Zhang,& Hongwen Sun, (2020). Novel and legacy poly- and perfluoroalkyl substances (PFASs) in indoor dust from urban, industrial, and e-waste dismantling areas. https://doi.org/10.1016/j.envpol.2020.114461

*including volumes in batteries reported in the second consultation

The non-polymers listed by stakeholders in Table 2 consist of 92% non-ionic and 8% ionic PFASs. Of the polymers, 96% were fluoropolymers, less than 1% were PFPE, and 3% were sidechain fluorinated polymers. According to stakeholders, the main polymeric PFASs used in the energy sector are PTFE, PFA and perfluoroalkane sulfonic acid ionomers (PFSA), which account for 65%, 14% and 5% of the total fluorinated polymer use, respectively. The current rapid growth of population, technology, and global warming caused by fossil fuel sources has encouraged development of alternative clean energy sources. Fluoropolymers play a major role in this transition. For the energy sector, stakeholders expect an increase in annual sales of PFAS containing mixtures and articles in and outside the EEA of more than 15%, and in some cases up to 100%. However, there is no one-to-one relation between sales and the volumes or quantities of PFASs. Details on trends in the energy sector are included in Appendix 1.

3.2. Uses

3.2.1. Introduction

PFASs have multiple properties that make them valuable in several electronics and energy applications. An overview of properties is provided in Table 3.

Sector	Identified properties
Electronics	Non-reactive, stable, low surface tension, non-sticking, high purity, low dielectric constant, low off-gassing, ensuring vacuum environment, low dissipation factor, ultra-thin, resistant to oil, resistant to water, resistant to sulphur, high volume/surface resistivity, high dielectric breakdown strength, piezoelectric and pyroelectric properties, dipoles, hydrophobic, good solubility in polymers, optically clear, low loss insulation, flame resistance, thermal stability, low refractive indices, good heat conductivity, good evaporative cooling, acidic.
Semiconductor	Heat resistance, low dielectric constant, clearness, plasma resistance, high photo- sensitivity, ability to generate acids, low surface tension, Marangoni effect, low re- fractive index, acidic, non-reactive, stable, non-corrosive, temperature uniformity, generation for reactive oxygen/fluoride species, chemical resistance, high purity, anti-adhesion, insulation, barrier properties, thermal stability
Energy	Chemical/thermal resistance, ion transportation, high weatherability, high trans- parency, corrosion resistance, oleophobic, hydrophobic, hydrophilic, low surface tension, stable, non-reactive, acid gas scrubber, heat absorption, conductivity, ca- pacity to dissolve gases, bipolar, resistance to acids, and highly oxidizing species, wettability, heat conductivity, high dielectric strength, low global warming potential, forms no residue, dirt repellence, high vapour barrier, high transparency, particular and chemical filtration.

TABLE 3. Properties of PFASs, information from stakeholders and Glüge (2020)³

PFASs are used in both electronic products and components itself to enhance their functionality as well as in the production process of those products or components.

3.2.2. Identified uses in the electronics and semiconductor sectors

Glüge et al (2020)³ identified uses in the electronics sector. These uses were complemented with information from stakeholders, collected in the call for evidence, the survey and the second consultation.

In Table 4 and 5 an overview of identified uses and subuses of PFASs in the electronics and semiconductor sectors is provided.

TABLE 4. Identified uses of PFASs in the electronics sector

Use category Electronics	Sub-use
Wires and cables (Heating cables, coaxial cable)	Heating cables, coaxial cable
Coating of electronic components	Membranes
Electronic component(s)	Liquid crystal displays, vent filters, air filters, sound permeable membrane, printed circuit board, tactile switch components, an- tennas, membranes, organic light-emitting diode, optical fibres, rod lenses
Anti-drip agent	
Fire protection fluid	
Heat transfer fluids	
Sealing for electronic components	
Solvent	
Aerosol/ Solvent cleaning of electronics components	
Lubricant	
Lubricating oil	
Lubricant deposition	

TABLE 5. Identified uses of PFASs in the semiconductor sector

Use category Semiconductor manufacturing	Sub-use
Photolithography	Photoacid generators, antireflection coatings, topcoats and em- bedded barrier layers, surfactants, and filters
Nanoimprint Lithography	
Plasma Etch and Wafer Cleaning	
Wafer	Wet etch
Vapour deposition chamber	Cleaning
Heat Transfer Fluids	
Vacuum pump	Vacuum fluid
Thermal testing of semiconductor devices (in-line and end of line)	
Advanced semiconductor packaging	Encapsulants and thermal Interface materials, flux, temporary ad- hesives, hydrophobic coating/hermetic seal packages
Semiconductor manufacturing equipment & infrastruc- ture - Enabling uses of fluoropolymer articles (polymer parts embedded within manufacturing equipment, spare parts and infrastructure, piping, tubing, gaskets etc)	
Release sheet for thermocompression bonding pro- cess of semiconductor chips	
Data centres	
Use category Semiconductor products and compo- nents	
Photoresist	Epoxy, case masking
Plastics such as polycarbonate/Acrylonitrile butadiene styrene	

Fluoroelastomers, polymers including polyimides, polyamides, polyesters, polycarbonate

Adhesive, coating, lubricant

3.2.3. Identified uses in the energy sector

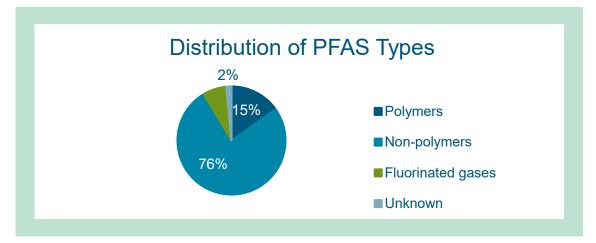
Uses of PFASs identified by Glüge et al (2020)³ were complemented with information from stakeholders, collected in the call for evidence, the survey and the second consultation. In Table 6 an overview of identified uses and subuses of PFASs in the energy sector is provided.

TABLE 6. Identified uses of PFASs in the energy sector

Use category	Sub-use
Photovoltaic cells	Film/coating
Wind energy	Film/coating, cables, lubricants
Coal based power plant	Heat exchanger tubing
Nuclear power plant	Infrastructure: Gasket material
Proton-exchange membrane (PEM) fuel cells	Membrane electrode assemblies in gas diffusion layer, mem- brane, and microporous layer
	Sealant
PEM electrolyser/ PEM fuel cells	Sealing materials; gaskets
Lithium-ion batteries	Seals, electrode binders, separator films/coatings, electrolyte ad- ditives, thermal management pack/module
Batteries	Battery fluid
	Compounds for separator films
	Binder
Electrolysis technologies (not PEM)	Equipment: gaskets, tubes, inliner of pipes/tanks
Oil and gas application	Equipment: gaskets, tubes, inliner of pipes/tanks

3.3. Substance identity

A variety of non-polymeric, polymeric PFASs and fluorinated gases are used in the electronics, semiconductor, and energy sectors. An overview of PFASs listed by Glüge et al (2020)³ is provided in Appendix 2.


In Table 7, a summary is provided of the number of different PFASs identified by stakeholders and in Glüge et al (2020).³

Sector	PFASs	Non-po- lymers	Non- io- nic	lo- nic	Polymers	FP	PFPE	SCFP	Fluorinated gases	Unknown
Electronics (including se- miconductor)	257	196			39				18	4
Energy	57	35			20				1	1
Total*	286	219	75	103	46	19	19	15	18	5

TABLE 7. Number of different PFASs identified by stakeholders and in Glüge et al (2020)³

* Several PFASs were identified in both sector groups

In Figure 1 and 2, the group distribution of identified PFASs in the electronics (including semiconductor) sector and energy sector are shown.

FIGURE 1. Group distribution of identified PFASs in the electronics sector (including semiconductors)

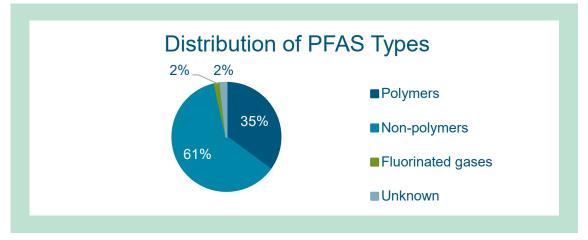


FIGURE 2. Group distribution of identified PFASs in the energy sector

The ratio of different non-polymers and polymers in the electronics (including semiconductors) sector is approximately 1:5. In the energy sector this ratio is approximately 1:3.

3.4. Emission characterisation

3.4.1. Introduction

Emissions of PFASs from the production and use in the electronics, semiconductor, and energy sectors in 2020 were estimated. For the estimation, the REACH methodology¹⁰ was applied, using the volumes of PFASs in tables 1 and 2, default release factors from the REACH environmental release categories¹¹, and data from a study on emission in the electronics industry by the IPCC¹²

¹⁰ Guidance on information requirements and Chemical Safety Assessment / Chapter R.16: Environmental exposure assessment. Version 3.0. ECHA (2016)

¹¹ <u>What is Environmental Release Category (ERC) and How It is Used for Environmental Risk Assessment</u> (chemsafetypro.com)

¹² Electronics Industry Emissions. In: 2019 Refinement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 3: Industrial Processes and Product Use, chapter 6. Intergovernmental Panel on Climate Change (IPCC)

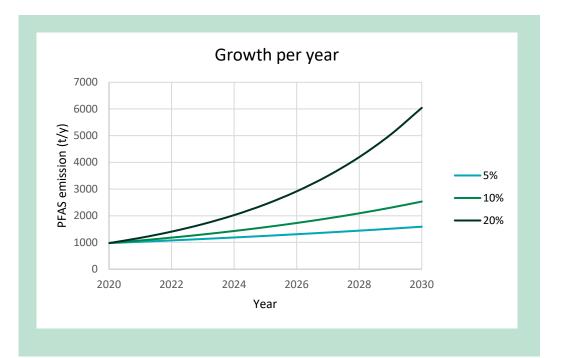
For the emission characterisation, the different groups of PFASs were slightly modified:

- Non-polymers, including perfluoroalkyl acids (PFAA), PFAA-precursors and sidechain polymers
- 2. Fluorinated gases
- 3. Polymers, including fluorinated polymers and perfluoropolyethers

Although sidechain fluorinated polymers are chemically part of the polymer group, they are grouped under PFAA and PFAA-precursors. The justification for this is that the sidechain of the SCFP easily break off, separating the polymeric backbone from the PFAA sidechain. The SCFP has now become a non-polymer and acts as a non-polymer.

3.4.2. Emissions in the electronics (including semiconductor) and energy sectors

Emissions of PFASs were calculated for different stages in the life cycle. Because of uncertainties in the estimated volumes and many unspecified actual and patented uses the results must be considered as a first tentative estimation with considerable uncertainty because many calculation parameters are based on assumptions with limited underpinning facts. The approach can be used for further refinement when specific and more quantitative data become available. Emissions were calculated for the production and use stages of the life cycle of PFASs. In Table 8 the estimated emission from the electronics (including semiconductor) and energy sectors aggregated for the production and use phases are presented.


TABLE 8. Estimated emission in the electronics (including semiconductor) and energy sectors

Sector	Non-polymers (t/y)	Fluorinated ga- ses (t/y)	Polymers (t/y)	Total PFASs (t/y)
Electronics (including semi- conductor)	348 - 677	7	11 – 292	366 - 976
Energy	42		12 - 13	53-56

Estimated growth of PFASs emissions over time in the electronics (including semiconductor) and energy sectors

The growth in emissions of PFASs depends on the growth of the electronics industry (including semiconductors) and the energy sectors. This growth is not exactly known and therefore three scenarios are developed: 5%, 10 % and 20% growth per year. The scenarios provide a preliminary estimation of emissions, assuming that no mitigating measures or alternatives are introduced. The outcome further depends on the reliability of the baseline PFAS use and emission. In Figure 3 and 4 the expected growth in emissions of PFASs per year is given for the electronics (including semiconductors) and energy sectors respectively. For the electronics (including semiconductors) sector, a high estimation of 976 t/y is used as a starting point. For the energy sector, a high estimation of 56 t/y is used.

Based on the highest growth per year (20 %), emissions in 2030 will amount to 6043 tonnes (Figure 3) and 347 tonnes (Figure 4) for the electronics (including semiconductors) and the energy sector respectively.

FIGURE 3. Expected growth of emissions of PFAS from the electronics sector (including semiconductors)

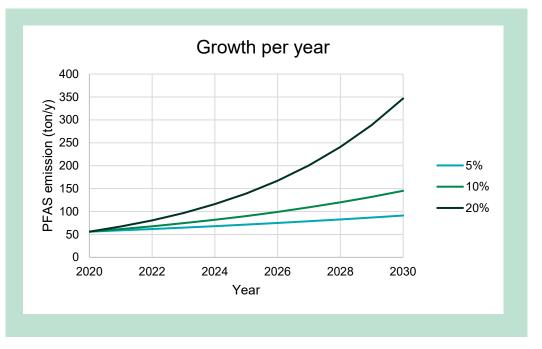


FIGURE 4. Expected growth of emissions of PFASs from the energy sector

3.5. Alternatives

3.5.1. Introduction

The alternatives listed are either commercially available, under development or currently being investigated. In general, information on non-PFAS alternatives and techniques to eliminate PFAS use remains limited. Due to patented and confidential information, the composition of certain alternatives remains unknown. If alternatives become available in due time, considerable cost and time for the transition are expected.

3.5.2. Alternatives in the electronics sector

A list of alternatives mentioned by stakeholders or in literature is included in **Table A in Appendix 3**. The industry stakeholder consensus is that PFAS alternatives are not readily available for the electronics sector.

Wires and cables

For insulation and fire protection, alternatives to PFASs include polyvinylchloride (PVC), polypropylene (PP), polyamide (PA), polyurethane (PUR), low- and high-density polyethylene (PE), nylon, chlorinated polyethylene (CPE), neoprene, and silicone. Other alternatives may not prove as efficient and will show inferior performance, for instance in heat resistance. Mica, ethylene propylene diene monomer (EPDM) and Polyether ether ketone (PEEK) are alternatives that lack flexibility and make the articles they are used in heavier and thus unsuitable for some applications such as in aviation.

Coating

For coating purposes, there are silicon and silica-based alternatives, as well as acrylic resin, epoxy, urethane resin, parallyne and nanocoatings. Silicone alternatives have some draw-backs compared to PFASs, including their stickiness, causing contamination, and blocking of transmission to sensors (e.g., in touchscreens).

Electronic components

PFASs are widely used in electronic components. Several alternatives are available but in general it is unclear if performance of the components remains the same.

Sealing and lubricants

EPDM and silicone are alternatives, but sealing is of inferior quality. Silicon-based alternatives for lubricants are said to cause interaction with the product.

Cleaning

Alcohol-based alternatives are available, but performance compared to PFASs is not clear.

Dielectric fluids and liquid impregnates

Natural and synthetic esters and oils are alternatives to PFASs, but it is unclear if performance is comparable to PFASs.

3.5.3. Alternatives in the semiconductor sector

A list of alternatives mentioned by stakeholders or in literature is included in **Table B in Appendix 3**. The industry stakeholder consensus is that PFAS alternatives are not readily available for the semiconductor sector.

Photoresist

Hydrocarbon-based greases, molybdenum disulphide, graphite are possible alternatives to prevent contamination of the surface of the photomask and to provide uniformity in coating.

Photo acid generators (PAG)

For PAG, aromatic PAG have been proposed. However, it is not clear if it is currently offered on the market.

Immersion cooling

Alternatives include mineral oils, synthetic oils, natural oils, and hydrocarbon fluids. However, their applicability is unclear.

3.5.4. Alternatives in the energy sector

A list of alternatives mentioned by stakeholders or in literature is included in **Table C in Appendix 3**. The industry stakeholder consensus is that PFAS alternatives are not readily available for the energy sector. If alternatives become available in due time, considerable cost and time for the transition are expected.

Solar panels/photovoltaic cells

Alternatives include polyolefin, polyester (PE), polyamides (PA), polyethylene terephthalate (PET), ethylene vinyl acetate and titanium-dioxide nanoparticles, although some stakeholders report inferior performance. In addition, glass and metallisation paste are alternatives in back and front panels.

Windmill blades

Alternatives include coatings based on polyaspartic ester and titanium-dioxide.

Fuel cells and batteries

For seals, hydrocarbon-based seals are an alternative whereas for membranes, hydrocarbon or sulphonated polyether ether ketone (PEEK) may be alternatives, although their durability is questioned. Electrospun polybenzimidazole-type materials are possibly an alternative to reinforce cells.

3.6. Economic impacts

Fluoropolymers play a critical role for many industries. For the scope of this summary report, it is worth to mention some descriptive statistics for the relevant industries in 2020 for the EU. The presented numbers are roughly the same for the EEA with and without the UK.⁹

- Around 40 000 tonnes of fluoropolymers are estimated to be sold in the EEA. Europe is a
 net exporter of fluoropolymers, with 49 000 tonnes estimated to be produced annually in
 the EEA, 24 000 tonnes exported outside of the EEA, and around 15 000 tonnes imported), with a relatively high R&D investment rate in fluoropolymers equal to 5.5% of total
 revenue.
- The electronics industry used 3 500 4 000 tonnes of fluoropolymers (for a value of €50 €80 million) enabling the industry to manufacture several € billion (e.g., EU semiconductor market was valued approximately €25 billion). Fluoropolymers are used, for example, in the manufacture of semiconductors for their resistance to aggressive etching chemicals. They are also used to manufacture millions of electronics products, for enhancing, for example, the reliability and data transmission of cables.
- The renewable energy industry used 500 tonnes of fluoropolymers (for a value of around €20 million). Fluoropolymers are used in this industry for their properties (e.g., optical transparency and electrical insulation strongly reducing the failure rate).

No detailed information on impact of a PFAS restriction on the European industry is available from industry stakeholders nor literature, although one stakeholder claims:

"Impacts on semiconductor yield can be as high as millions of Euros per day, per factory." The industry stakeholder consensus is that PFAS alternatives are not available for the electronics (including semiconductor) and energy sectors. Main challenges that the sectors phase, are the cost ranging from $\leq 11 - 100 +$ million and the time needed for the transition ranging from 3 - 15 + years. Industry stakeholders.

Industry stakeholders expected a loss of competitiveness and innovation in the EEA. They highlight that competitors outside the EEA will immediately gain market share because non-EEA competitors (mostly located in Asia) can continue to use a technology (using PFASs) that would be restricted to EEA companies.

Five stakeholders, two of which are based in the EEA, reported a precise estimate of the loss in Earnings before interest, taxes (EBIT) for the electronics sector (including semiconductors):

- €150 million (not clear over which time).
- €1 400 million (over 20 years).
- €20 000 million (over 20 years).
- €50-100 million (over 20 years).
- €1 000 million (over 1 year).

After comparing EBIT losses with annual sales, EBIT sales ratios of 20% and 50% are derived for the two companies in the EEA.

Three stakeholders report some estimates of the loss in EBIT for the energy sector (these are the same stakeholders for the electronics sectors reporting the same expected EBIT losses):

- €50 -100 million (over 20 years); this company is based outside the EEA.
- €1 500 million (over 20 year); this company is based in the EEA.

No conclusions on the EBIT-sales ratio can be derived from these two replies.

3.7. Social impact

Stakeholders reported expected adverse reactions of suppliers and customers following a restriction of PFASs (e.g., redirecting demand towards outside non-EEA markets).

- Manufacturers of PFASs: The main economic impact of a PFAS ban is expected to be downstream the supply chain. The employment effects are expected to be of a larger magnitude for the electronics (including semiconductor) and energy sectors. This is more relevant for companies in these sectors that face stronger competition from producers of similar products with better performances.
- Electronics and semiconductor sectors: The FluoroCouncil report that the use of the fluoro-technology supports more than 72 000 jobs in Europe, though it is not clear how many of these jobs are directly connected to PFAS uses in car-electronics, because fluoro-technology is also used in other automotive solutions (e.g., engines, fuel systems, interiors, transmissions). The FluoroCouncil report that the industry of electronic applications supports more than 53 000 jobs in Europe. The automotive industry also uses PFAS-based electronic components. The FluoroCouncil report that the semiconductor sector involves more than 91 000 jobs in Europe.¹³
- Energy sector: The FluoroCouncil report that the industry of alternative energy applications (e.g., Li-batteries, fuel cells, photovoltaic solar panels) supports more than 2 000 jobs in Europe.¹³

Based on the available stakeholder information, no reasonable estimate can be made of the impact of a PFAS restriction on employment for downstream users.

According to one stakeholder, the impact on employment along the EEA supply chain is anticipated to be huge. An exact number of workers that might face layoff due to the restriction of PFASs without a proper transitional period, also considering the lack of alternatives, was however not provided.

The number of people along the supply chain in the EEA that will be affected. According to the other stakeholders, a PFAS restriction is expected to have impact on between 500 to several thousands of employees in the electronics sector and between 500-2500 in the semiconductor and the energy sectors.

Overall, the restriction of PFASs is likely to affect the workforce in the whole EEA.

¹³ FluoroCouncil, 2019. Societal Benefits of FluoroTechnology [Brochure]. <u>FluoroCouncil Scientific Letter</u> <u>Datasheet REV4.pdf (ct.gov)</u>

References

Footnote	References
1	ECHA publishes PFAS restriction proposal - <u>All news - ECHA (europa.eu)</u>
2	SPIN is a publicly accessible database on the use of Substances in Products in the Nordic Coun- tries. link: <u>http://spin2000.net/</u>
3	Glüge, Juliane & Scheringer, Martin & Cousins, Ian & DeWitt, Jamie & Goldenman, Gretta & Her- zke, Dorte & Lohmann, Rainer & Ng, Carla & Trier, Xenia & Wang, Zhanyun, (2020). An overview of the uses of per- and polyfluoroalkyl substances (PFAS). 10.31224/osf.io/2eqac
4	Note that the definition of PFASs used in Glüge et al. (2020) is largely consistent but not identical to the definition used <i>in the restriction proposal</i> (<u>All news - ECHA (europa.eu)</u>) This may lead to differences in tonnages of PFASs identified in the uses.
5	https://countryeconomy.com/countries/groups/european-economic-area
6	http://www.urbanmineplatform.eu/homepage
7	Zhang Bo & Yuan He, Y., & Yingyan Huang, & Danhong Hong & Yiming Yao & Lei Wang & Wenwen Sun & Baoqin Yang, & Xiongfei Huang, & Shiming Song, & Xueyuan Bai, & Yuankai Guo, & Tao Zhang,& Hongwen Sun, (2020). Novel and legacy poly- and perfluoroalkyl substances (PFASs) in indoor dust from urban, industrial, and e-waste dismantling areas. https://doi.org/10.1016/j.envpol.2020.114461
8	It should be noted that this number is probably an underestimation of the actual concentration in electronics since the concentration was measured in dust
9	Wood, 2022: Fluoropolymer Product Group of PlasticsEurope. Update of market data for the socio- economic analysis (SEA) of the European fluoropolymer industry. Final report. <u>https://fluoropoly-</u> mers.plasticseurope.org/application/files/1216/5485/3500/Fluoropolymers Market Data Update - <u>Final report - May 2022.pdf</u>
10	Guidance on information requirements and Chemical Safety Assessment / Chapter R.16: Environ- mental exposure assessment. Version 3.0. ECHA (2016)
11	What is Environmental Release Category (ERC) and How It is Used for Environmental Risk As- sessment (chemsafetypro.com)
12	Electronics Industry Emissions. In: 2019 Refinement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 3: Industrial Processes and Product Use, chapter 6. Inter- governmental Panel on Climate Change (IPCC)
13	FluoroCouncil, 2019. Societal Benefits of FluoroTechnology [Brochure]. <u>FluoroCouncil Scientific</u> Letter Datasheet REV4.pdf (ct.gov)
14	EU Market Outlook for Solar Power, 2021 – 2025 <u>https://api.solarpowereurope.org/up-</u> loads/EU Market Outlook for Solar Power 2021 2025 Solar Power Europe d485a0bd2c.pdf
15	Ibid
16	Tsiropoulos, I., Tarvydas, D. and Lebedeva, N., Li-ion batteries for mobility and stationary storage applications, EUR 29440 EN, Publications Office of the European Union, Luxembourg, 2018, ISBN 978-92-79-97254-6, doi:10.2760/87175, JRC113360. https://publications.jrc.ec.europa.eu/repository/handle/JRC113360
17	European Battery Alliance Fostering a Strategic Value Chain (Presentation) – Numbers from Benchmark Mineral Intelligence 2020. NewsEvents 5 SLIDES 20210122 141131.pdf (project-albatts.eu)
18	Urban Mine Platform

	http://www.urbanmineplatform.eu/urbanmine/batteries/weight
19	Hydrogen Europe Position Paper on PFAS, The importance of fluoropolymers across the hydrogen value chain, and impacts of the proposed PFAS restriction for the hydrogen sector, 01 January 2023. Hydrogen-Europe-position-paper-on-PFAS-ban v12 FINAL.pdf (hydrogeneurope.eu)
20	FCHO – Chapter 1, Technology and Market, March 2022. https://wayback.archive-it.org/12090/20230417134116/https://www.fchobservatory.eu/sites/de- fault/files/reports/Chapter%201%20-%20Technology%20and%20Market%20-%202022%20Fi- nal%20Revised%2007.2022.pdf
21	https://fuelcelltrucks.eu/project/hyundai-1-600-h2-xcient-trucks-in-switzerland/
22	Net Zero By 2050 – A Roadmap for the Global Energy Sector – page 75 <u>https://iea.blob.core.win-</u> dows.net/assets/deebef5d-0c34-4539-9d0c-10b13d840027/NetZeroby2050-ARoadmapfortheGlob- alEnergySector_CORR.pdf
23	JRC, 2019, page 28. Materials dependencies for dual-use technologies relevant to Europe's de- fence sector. <u>https://publications.jrc.ec.europa.eu/repository/handle/JRC117729</u>
24	https://www.grandviewresearch.com/industry-analysis/fuel-cell-market, https://www.marketsand- markets.com/Market-Reports/fuel-cell-market-348.html, https://www.globenewswire.com/en/news- release/2023/05/31/2679372/0/en/Global-Fuel-Cell-Technology-Market-Size-on-a-Steady-Rise- Projected-to-Surpass-USD-26-55-Billion-by-2028-with-a-Remarkable-CAGR-of-23.html
25	Fuel Cells and Hydrogen Joint undertaking. Study on Value Chain and Manufacturing Competitive- ness Analysis for Hydrogen and Fuel Cells Technologies FCH contract 192 Findings Report. <u>https://wayback.archive-it.org/12090/20220602163936/https://www.fch.europa.eu/page/FCH-value- chain</u> - Taken from <u>https://wayback.archive-it.org/12090/20220602163936/https://www.fch.eu- ropa.eu/page/FCH-value-chain</u>
26	Fuel Cells and Hydrogen Joint undertaking. Study on Value Chain and Manufacturing Competitive- ness Analysis for Hydrogen and Fuel Cells Technologies FCH contract 192 Findings Report – page 12. <u>https://wayback.archive-it.org/12090/20220602163936/https://www.fch.eu- ropa.eu/page/FCH-value-chain</u> - Taken from <u>https://wayback.archive-</u> it.org/12090/20220602163936/https://www.fch.europa.eu/page/FCH-value-chain
27	Ibid.
28	<u>BCG, 2021, p. 2</u> The Green Tech Opportunity in Hydrogen, APRIL 12, 2021, By Max Ludwig, Martin Lüers, Markus Lorenz, Esben Hegnsholt, Minjee Kim, Cornelius Pieper, and Katharina Meidert
29	<u>BCG, 2021, p. 5.</u> - The Green Tech Opportunity in Hydrogen, APRIL 12, 2021, By Max Ludwig, Martin Lüers, Markus Lorenz, Esben Hegnsholt, Minjee Kim, Cornelius Pieper, and Katharina Meidert
30	What are the Key Differences Between Single-phase and 2-phase Full Immersion Cooling? https://www.engineeredfluids.com/slic-cooling-for-electronics
31	Ernest Orlando Lawrence Berkeley National Laboratory 2016. Immersion Cooling of Electronics in DoD Installations. Henry Coles and Magnus Herrlin Energy Technologies Area.
32	KPMG Report for DCI, 2018, p. 34. The Icelandic Data Center Industry
33	KPMG Report for DCI, 2018, p. 10. The Icelandic Data Center Industry
34	European data Centre, 2020, p. 4. "2020: a tipping point for the industry" <u>https://re-</u> search.euro.savills.co.uk/netherlands-pdfs/spotlight-eu-data-centre2020.pdf
35	Immersion Cooling Market by Type (Single-Phase and Two-Phase), Application (High-Perfor- mance Computing, Edge Computing, Cryptocurrency Mining), Cooling Fluid, Components (Solu- tions, Services), and Geography – Global Forecast to 2030. <u>Markets and Markets report Immersion</u> <u>Cooling Market, 2019</u>
36	High-Temperature Wire: Silicone vs Teflon. https://www.sycor.com/blog/post/silicone-vs-teflon

37	Wire Insulation Types and Purposes Explained (jemelectronics.com) <u>https://blog.jemelectron-</u> ics.com/wire-insulation-types-explained
38	PVC vs Teflon Insulated Wire. <u>https://www.electroprep.com/blog/pvc-vs-teflon-insulated-wire/</u>
39	OECD, 2022. Per- and Polyfluoroalkyl Substances and Alternatives in Coatings, Paints and Var- nishes (CPVs). Series on Risk Management No.70. OECD, 2022 CPVs. <u>https://www.oecd.org/chemicalsafety/portal-perfluorinated-chemicals/per-and-polyfluoroalkyl-sub- stances-alternatives-in-coatings-paints-varnishes.pdf</u>
40	Types of Conformal Coating: Exploring materials for enhanced PCP protection. <u>https://blog.ma-tric.com/types-of-conformal-coating-pcb-protection</u>
41	Nanocoatings: The Solution to All of Our Environmental Protection Problems? 2015 NREL Photo- voltaic Module Reliability Workshop. <u>https://www.nrel.gov/pv/as-</u> sets/pdfs/2015_pvmrw_133_caswell.pdf
42	Ultra Thin Plasma Coating. P2i. https://www.p2i.com/solutions/
43	Precision Acoustics – PVdF. <u>https://www.acoustics.co.uk/product/pvdf/</u>
44	Tek Tip - Light Management & Diffusing Films Selector Guide A Guide to All Three Types of Light Management Films - Light Transmission, Light Diffusion, and Light Reflection. <u>https://www.tekra.com/resources/tek-tip-white-paper/tek-tip-light-management- films-selector-guide</u>
45	Moisture Barrier Bags. https://www.protectivepackaging.net/moisture-barrier-bags
46	PFAS Are The Next PCBs. https://www.engineeredfluids.com/post/are-pfas-the-next-pcbs
47	Dielectric fluids for safer, cooler, greener high performance data centres. <u>https://www.mi-volt.com/wp-content/uploads/2021/10/MIVOLT-Data-Centres-Brochure-Mar23.pdf</u> https://www.mivolt.com/
	GreenScreen Certified [™] Products > Cleaners & Degreasers in Manufacturing -
48	https://www.greenscreenchemicals.org/certified/products/category/cleaners-degreasers-in-manu- facturing
48	
	facturing 3M™ Fluorinert™ Electronic Liquids. <u>https://www.3m.com/3M/en_US/data-center-us/applica-</u>
49	<u>facturing</u> 3M™ Fluorinert™ Electronic Liquids. <u>https://www.3m.com/3M/en_US/data-center-us/applica-</u> <u>tions/immersion-cooling/fluorinert-electronic-liquids/</u>
49 50	facturing 3M™ Fluorinert™ Electronic Liquids. https://www.3m.com/3M/en_US/data-center-us/applica-tions/immersion-cooling/fluorinert-electronic-liquids/ Envirotemp 360 fluid. https://www.cargill.com/bioindustrial/dielectric-fluids/envirotemp
49 50 51	facturing 3M™ Fluorinert™ Electronic Liquids. https://www.3m.com/3M/en_US/data-center-us/applica-tions/immersion-cooling/fluorinert-electronic-liquids/ Envirotemp 360 fluid. https://www.am.com/3M/en_US/data-center-us/applica-tions/immersion-cooling/fluorinert-electronic-liquids/ Envirotemp 360 fluid. https://www.cargill.com/bioindustrial/dielectric-fluids/envirotemp The MIDEL Range, https://www.midel.com/midel-range/
49 50 51 52	facturing 3M™ Fluorinert™ Electronic Liquids. https://www.3m.com/3M/en_US/data-center-us/applica-tions/immersion-cooling/fluorinert-electronic-liquids/ Envirotemp 360 fluid. https://www.cargill.com/bioindustrial/dielectric-fluids/envirotemp The MIDEL Range, https://www.midel.com/midel-range/ Dielectric fluids for safer, cooler, greener high performance data centres. https://www.mivolt.com/ Gnonhoue, Olatoundji & Velazquez-Salazar, Amanda & David, Éric & Preda, Ioana. (2021). Review of Technologies and Materials Used in High-Voltage Film Capacitors. Polymers. 13. 766.
49 50 51 52 53	facturing 3M™ Fluorinert™ Electronic Liquids. <u>https://www.3m.com/3M/en_US/data-center-us/applica-tions/immersion-cooling/fluorinert-electronic-liquids/</u> Envirotemp 360 fluid. <u>https://www.cargill.com/bioindustrial/dielectric-fluids/envirotemp</u> The MIDEL Range, <u>https://www.midel.com/midel-range/</u> Dielectric fluids for safer, cooler, greener high performance data centres. https://www.mivolt.com/ Gnonhoue, Olatoundji & Velazquez-Salazar, Amanda & David, Éric & Preda, Ioana. (2021). Review of Technologies and Materials Used in High-Voltage Film Capacitors. Polymers. 13. 766. 10.3390/polym13050766. US Patent Application for Fluoropolymer-coated photomasks for photolithography Patent
49 50 51 52 53 54	facturing 3M™ Fluorinert™ Electronic Liquids. <u>https://www.3m.com/3M/en_US/data-center-us/applica-tions/immersion-cooling/fluorinert-electronic-liquids/</u> Envirotemp 360 fluid. <u>https://www.cargill.com/bioindustrial/dielectric-fluids/envirotemp</u> The MIDEL Range, <u>https://www.midel.com/midel-range/</u> Dielectric fluids for safer, cooler, greener high performance data centres. https://www.mivolt.com/ Gnonhoue, Olatoundji & Velazquez-Salazar, Amanda & David, Éric & Preda, Ioana. (2021). Review of Technologies and Materials Used in High-Voltage Film Capacitors. Polymers. 13. 766. 10.3390/polym13050766. US Patent Application for Fluoropolymer-coated photomasks for photolithography Patent Application #20030022073 issued January 30, 2003) - Justia Patents Search RIVM (2021): Report Summary Electronics and Energy for the Second Stakeholder Consultation
49 50 51 52 53 54 55	facturing 3M™ Fluorinert™ Electronic Liquids. https://www.3m.com/3M/en_US/data-center-us/applica-tions/immersion-cooling/fluorinert-electronic-liquids/ Envirotemp 360 fluid. https://www.cargill.com/bioindustrial/dielectric-fluids/envirotemp The MIDEL Range, https://www.midel.com/midel-range/ Dielectric fluids for safer, cooler, greener high performance data centres. https://www.mivolt.com/ Gnonhoue, Olatoundji & Velazquez-Salazar, Amanda & David, Éric & Preda, Ioana. (2021). Review of Technologies and Materials Used in High-Voltage Film Capacitors. Polymers. 13. 766. 10.3390/polym13050766. US Patent Application for Fluoropolymer-coated photomasks for photolithography Patent Application #20030022073 issued January 30, 2003) - Justia Patents Search RIVM (2021): Report Summary Electronics and Energy for the Second Stakeholder Consultation on a Restriction for PFAS KrF (248nm) Fujifilm [United States]. https://www.fujifilm.com/us/en/business/semiconductor-
49 50 51 52 53 54 55 56	facturing 3M™ Fluorinert™ Electronic Liquids. https://www.3m.com/3M/en_US/data-center-us/applica-tions/immersion-cooling/fluorinert-electronic-liquids/ Envirotemp 360 fluid. https://www.cargill.com/bioindustrial/dielectric-fluids/envirotemp The MIDEL Range, https://www.midel.com/midel-range/ Dielectric fluids for safer, cooler, greener high performance data centres. https://www.mivolt.com/ Gnonhoue, Olatoundij & Velazquez-Salazar, Amanda & David, Éric & Preda, Ioana. (2021). Review of Technologies and Materials Used in High-Voltage Film Capacitors. Polymers. 13. 766. 10.3390/polym13050766. US Patent Application for Fluoropolymer-coated photomasks for photolithography Patent Application #20030022073 issued January 30, 2003) - Justia Patents Search RIVM (2021): Report Summary Electronics and Energy for the Second Stakeholder Consultation on a Restriction for PFAS krF (248nm) Fujifilm [United States]. https://www.fujifilm.com/us/en/business/semiconductor-materials/photoresists/krf UNEP (2018) Draft report on the assessment of alternatives to perfluorooctane sulfonic acid, its

60	Liu, S.; Varanasi, P. R. Fluorine-Free Fused Ring Heteroaromatic Photoacid Generators and Pho- toresist Compositions Containing the Same. US20110183259, 2011
61	<u>Glodde, M.; Liu, S.; Varanasi, P. R. Fluorine-Free Photoacid Generators for 193-nm Lithography</u> <u>Based on Non-Sulfonate Organic Superacids. J. Photopolym. Sci. Technol. 2010, 23, 173–184, <u>DOI: 10.2494/photopolymer.23.173</u></u>
62	Proposed alternatives referenced in literature. Not clear whether it's actively being used: The iso- mers of nitrobenzenesulfonate (NBS), PAG based on acceptor-substituted thiosulfonate anions: 2- thiophenesulfonic acid, 5-chloro-4- nitro-, ion(1-) (TN), PAG based on acceptor-substituted aro- matic anions: pentacyanocyclopentiadienide (CN5), methoxycarbonyl-tetracyanocyclopentadienide (CN4-C1)
63	Perfluorooctane sulfonic acid, its salts and perfluorooctane sulfonyl fluoride – Stockholm Conven- tion. <u>http://chm.pops.int/Implementation/Alternatives/AlternativestoPOPs/ChemicalslistedinAnnexB/Perfluorooctanesulfonicacidandperfluorooctane/tabid/5869/Default.aspx</u>
64	https://patentimages.storage.googleapis.com/85/46/dd/6561168dd0eb70/EP3588535A1.pdf
65	Information Requirements under the Essential-Use Concept: PFAS Case Studies. Juliane Glüge, Rachel London, Ian T. Cousins, Jamie DeWitt, Gretta Goldenman, Dorte Herzke, Rainer Lohmann, Mark Miller, Carla A. Ng, Sharyle Patton, Xenia Trier, Zhanyun Wang, and Martin Scheringer. En- vironmental Science & Technology 2022 56 (10), 6232-6242 DOI: 10.1021/acs.est.1c03732
66	Hempel launches its first leading edge protection coating for wind blades. <u>https://www.hem-</u> pel.com/news/2022/hempel-launches-its-first-leading-edge-protection-coating-for-wind-blades
67	Y. Zhao, M. Yoshida, T. Oshima , S. Koizumi , M. Rikukawa , N. Szekely , A. Radulescu and D. Richter , Elucidation of the morphology of the hydrocarbon multi-block copolymer electrolyte mem- branes for proton exchange fuel cells, Polymer, 2016, 86 , 157 —167. https://doi.org/10.1016/j.po- lymer.2016.01.061
68	PFAS in Automotive Technologies of the Future. https://www.vda.de/vda/de/aktuelles/publikationen/publication/pfas-in-automotive-technologies-of- the-future
69	Versaci, D., Nasi, R., Zubair, U. et al. New eco-friendly low-cost binders for Li-ion anodes. J Solid State Electrochem 21, 3429–3435 (2017). <u>https://doi.org/10.1007/s10008-017-3665-5</u>
70	Bresser, D., Buchholz, D., Moretti, A., Varzi, A., & Passerini, S. (2018). Alternative binders for sus- tainable electrochemical energy storage—the transition to aqueous electrode processing and bio- derived polymers. Energy & Environmental Science, 11(11), 3096-3127. <u>https://doi.org/10.1039/C8EE00640G</u>

Glossary

ALK	Alkaline water electrolysis
CAGR	Compound Annual Growth Rate
CPE	Chlorinated polyethylene
EBIT	Earnings before interest, taxes
ECHA	European chemicals agency
EEA	European Economic Area
EPDM	Ethylene propylene diene monomer
ESIA	European semiconductor industry association
ETFE	Ethylenetetrafluoroethylene
FEP	Fluorinated ethylene-propylene
FP	Fluoropolymer
IPC	Global organisation that supports the quality and reliability of electronics manufacturing
IPCC	Intergovernmental Panel on Climate Change
JBCE	Japanese Business Council Europe
PA	Polyamide
PAG	Photo acid generators
PE	Polyethylene
PEEK	Polyether ether ketone
PEM	Proton-exchange membrane
PET	polyethylene terephthalate
PFA	Perfluoroalkoxy polymer
PFAA	Perfluoroalkyl acids
PFAS	Polyfluoroalkyl substances
PFBS	Perfluorobutanesulfonate
PFPE	Perfluoropolyethers
PFSA	perfluoroalkane sulfonic acid ionomer
PP	Polypropylene
PTFE	Polytetrafluoroethylene
PUR	Polyurethane
PVC	Polyvinylchloride
PVDF	Polyvinylidene fluoride
REACH	Registration, evaluation, authorisation and restriction of chemicals
SCFP	Sidechain fluorinated polymer
SEMI	Global industry association representing the electronics manufacturing and design supply chain
USD	United States Dollar

1. Appendix - Trends in the energy sector

Wood (2022)⁹ researched trends in volumes and concluded that the fluoropolymer producers in Europe anticipate strong growth in the fluoropolymer market in the medium term (e.g., by 2025) due to the recovery from the COVID-19 pandemic which compressed the market in 2020. Growth is expected to continue in the long term (e.g., until 2050), partly driven by increasing demand in several key sectors impacted by global mega-trends such as the energy transition and digitalisation.

The current rapid growth of population, technology, and global warming caused by fossil fuel sources has encouraged development of alternative clean sources of energy. According to stakeholders, fluoropolymers play a major role in this, with the use in Solar power, Batteries, Fuel cells and more.

Solar power:

The solar power market in the EU is expected to grow significantly over the next years, and with it the use of PFASs, assuming there is no change in technology. According to a report by Solar Power Europe the growth will be higher than the targets formulated by EU member states in their National Energy and Climate Change plans. The growth is not only driven by the various EU policy initiatives in the context of the EU Green Deal but also by an ongoing cost reduction and Solar's versatility¹⁴.

A trend from 2016 to 2021 The member states of the EU saw an increase of new solar photovoltaic (PV) capacity connected to their grids from 5 GW on 2016 to 25.9 GW in 2021 with a cumulative solar PV of 164.9 GW. It is projected that these numbers will increase to 38.5 in 2023 and 44.6 GW in 2024 with a cumulative GW of >240 GW based on EU market outlook in 2021¹⁵.

Batteries:

Asia (China, South Korea, and Japan) remains the worldwide leader in the production of Lithium-ion batteries, with many manufacturers able to produce several GWh per year. The European production capacity is expected to grow over time¹⁶. In 2020, the EU share in global production of Lithium-ion batteries was 6.8% (50.44 GWh) of the total of 741.8 GWh, with an expected increase to approximately 17.6% (554.88 GWh) of a total of 3152.7 GWh in 2030¹⁷. In 2015 approximately 85 000 tonnes of rechargeable lithium-based batteries (lithium-ion batteries) were placed on the EEA market¹⁸. A stakeholder indicated that this number had increased to 150 000 tonnes in 2020 and estimated a use of 1 500 tonnes of PVDF in lithium-ion batteries in the EEA.

With 50.44 KWh generated by 150 000 lithium-ion batteries placed on the market in 2020, it can be extrapolated that generating 554.88 GWh in 2030 will require approximately 1 650 000

¹⁴EU market Outlook for Solar Power, 2021 – 2025 <u>https://api.solarpowereurope.org/uploads/EU_Market_Outlook for Solar Power 2021 2025 Solar Power Europe d485a0bd2c.pdf</u>

¹⁶Tsiropoulos, I., Tarvydas, D. and Lebedeva, N., Li-ion batteries for mobility and stationary storage applications, EUR 29440 EN, Publications Office of the European Union, Luxembourg, 2018, ISBN 978-92-79-97254-6, doi:10.2760/87175, JRC113360.

https://publications.jrc.ec.europa.eu/repository/handle/JRC113360

¹⁷ European Battery Alliance Fostering a Strategic Value Chain (Presentation) – Numbers from Benchmark Mineral Intelligence 2020. <u>NewsEvents 5 SLIDES 20210122 141131.pdf (project-albatts.eu)</u>

¹⁸ Urban Mine Platform http://www.urbanmineplatform.eu/urbanmine/batteries/weight

¹⁵ Ibid

lithium-ion batteries. Thus, the volume of PVDF can be expected to increase from 1 500 tonnes in 2020 to 16 500 tonnes in 2030.

PEM fuel cells and water electrolysers¹⁹

The core of both proton exchange membrane (PEM) water electrolysers and PEM fuel cells is an electro-chemical reaction through a membrane in which certain types of fluoropolymers are used. A very large proportion of planned projects involving electrolysers and fuel cells (and in some applications 100%) are based on this PEM technology.

The total use of fluoropolymers as well as other PFASs are estimated to increase significantly in the coming years as a result of increased production of PEM fuel cells for vehicles and industry.

To produce a 60 kW PEM fuel cell, Hydrogen Europe indicates a total use of:

- 2.5 kg sealing material (typically, ETFE, PTFE, FEPM and FFKM; seal-on- Membrane electrode assemblies (MEA) assumed)
- 0.2 kg ionomer carrying sulfonic acid groups (in the ionomer membrane, reinforced with PTFE)
- 0.15 kg PTFE in the gas diffusion layer

Assuming no changes in use of PFASs, producing 1 GW would require around 44.25 tonnes of PTFE and 3.25 tonnes of ionomer.

Switzerland aims to deploy 1 600 fuel cell trucks by 2025²⁰ with a fuel cell capacity of 190 kW²¹. Using abovementioned numbers and estimating that a threefold increase in kW (60 kW to 190 kW) will require double the amount of PFASs, around 26.9 tonnes of PTFE and 2 tonnes of ionomer would be required. Looking at the global use, Net Zero by 2050 aims for an increase in fuel cell vehicles to 15 million by 2030.²² Assuming a fuel cell capacity of 60 kW per vehicle, a total required capacity of 900 GW can be calculated, requiring around 39 825 tonnes of PTFE and 2 925 tonnes of ionomer.

Of the electrolysis projects to be completed by 2030 in the EU, 57% will be based on PEM fuel cell electrolysis technology, with a capacity share of 33% of total generated hydrogen. The membrane used in alkaline water electrolysis (ALK) does not contain PFAS. However, fluoro-polymers are used in the product, e.g., as sealing materials and gaskets. Of the water electrolysis projects to be completed by 2030 in the EU, 35% will be based on ALK electrolysis technology, providing a capacity share of 59% of the total generated hydrogen.

Hydrogen Europe calculated that for reaching the objective of 10 million tonnes of renewable hydrogen (ca. 140 GW) in the REPowerEU plan with PEM technology alone, a maximum of 1 750 tonnes of ionomers (e.g., Nafion) is required. Additionally, this would amount require 8 750 tonnes of sealing material (primarily PTFE).¹⁹

In 2019 the JRC estimated a CAGR (Compound Annual Growth Rate) of 18 % within a few years²³. General market prediction in 2023 indicate a CAGR of around or above 20% for the fuel cell market towards 2030²⁴.

²⁰ FCHO – Chapter 1, Technology and Market, March 2022 – page 12 https://wayback.archiveit.org/12090/20230417134116/https://www.fchobservatory.eu/sites/default/files/reports/Chapter%201%20-%20Technology%20and%20Market%20-%202022%20Final%20Revised%2007.2022.pdf

²¹ <u>https://fuelcelltrucks.eu/project/hyundai-1-600-h2-xcient-trucks-in-switzerland/</u>

²² <u>Net Zero By 2050 – A Roadmap for the Global Energy Sector</u> – page 75 <u>https://iea.blob.core.win-</u> <u>dows.net/assets/deebef5d-0c34-4539-9d0c-10b13d840027/NetZeroby2050-ARoadmapfortheGlobalEner-</u> <u>gySector_CORR.pdf</u>

²³ JRC, 2019, page 28. Materials dependencies for dual-use technologies relevant to Europe's defence sector. <u>https://publications.jrc.ec.europa.eu/repository/handle/JRC117729</u>

²⁴ <u>https://www.grandviewresearch.com/industry-analysis/fuel-cell-market, https://www.marketsandmar-kets.com/Market-Reports/fuel-cell-market-348.html, https://www.globenewswire.com/en/news-rele-ase/2023/05/31/2679372/0/en/Global-Fuel-Cell-Technology-Market-Size-on-a-Steady-Rise-Projected-to-Surpass-USD-26-55-Billion-by-2028-with-a-Remarkable-CAGR-of-23.html</u>

¹⁹ Hydrogen Europe Position Paper on PFAS. The importance of fluoropolymers across the hydrogen value chain, and impacts of the proposed PFAS restriction for the hydrogen sector, 01 January 2023 Hydrogen-Europe-position-paper-on-PFAS-ban v12 FINAL.pdf (hydrogeneurope.eu)

According to The Fuel Cell and Hydrogen Joint Undertaking (FCH JU)²⁵ the assessment of potential development scenarios by 2024 for the European FCH value chain and manufacturing competitiveness has estimated that the European production of all fuel cells systems combined is expected to amount between €500 million (scenario characterised by low deployment, low EU production share) and €4 200 million (scenario characterised by high deployment, high EU production share). The same estimates range between €1 500 million and €10 600 million by 2030, corresponding to a value added of €500 million and €3 500 million, respectively.²⁶ A combination of high European demand and strong European production capacity, especially in the extremities of the value chain, is expected to lead to strong export performance, up to €1 000 million and €2 000 million, by 2024 and 2030, respectively²⁷ while in the more conservative scenario, in which the European production focuses mostly on components, the annual trade balance is expected to remain neutral.

The market for hydrogen-related machinery, equipment, and components could rise to an annual 200 billion USD by 2050.²⁸ Fuel cells and electrolysers offer the largest opportunities for machinery makers. Only fuel cells add up to potential revenue for machinery makers of USD 21-25 billion annually by 2050.²⁹

Data centres:

Two-phase liquid immersion cooling showed promising results in the energy saving of datacentres. It is more energy-efficient, however, the potential for emissions is deemed higher³⁰. In 2016 the cost of the fluids alone was found to be higher than the cost reduction because of a higher energy efficiency³¹.

The data centre market is characterized by a strong market concentration with 10 major players controlling more than half (52%) of the market revenues in 2016. The rest of the market is divided among nearly 1 500 vendors³². According to the KPMG report for the Icelandic Data Centre industry, the EMEA area, there were 620 data centre operators in 2016. Globally, the data centre market is expected to grow by 10% in the coming years.³³ As of 2020, data centres are consuming 1-3 % of the world power, and according to research from Swedish researcher Anders Andrae, by 2025, data centres will use 20% of the world's energy³⁴.

Several factors are driving this growth, including the datafication and the increased needs for computational power and storage drove up by technological trends such as Internet of Things,

²⁷ Ibid.

²⁸ <u>BCG, 2021, p. 2. -</u> The Green Tech Opportunity in Hydrogen, APRIL 12, 2021, By Max Ludwig, Martin Lüers, Markus Lorenz, Esben Hegnsholt, Minjee Kim, Cornelius Pieper, and Katharina Meidert.
 ²⁹ <u>BCG, 2021, p. 5.</u> - The Green Tech Opportunity in Hydrogen, APRIL 12, 2021, By Max Ludwig, Martin

³⁰ What are the Key Differences Between Single-phase and 2-phase Full Immersion Cooling? <u>https://www.engineeredfluids.com/slic-cooling-for-electronics</u>

³¹ Ernest Orlando Lawrence Berkeley National Laboratory 2016. Immersion Cooling of Electronics in DoD

²⁵ Fuel Cells and Hydrogen Joint undertaking. Study on Value Chain and Manufacturing Competitiveness Analysis for Hydrogen and Fuel Cells Technologies FCH contract 192 Findings Report. <u>https://wayback.archive it.org/12090/20220602163936/https://www.fch.europa.eu/page/FCH-value-chain</u> - Taken from <u>https://wayback.archive-it.org/12090/20220602163936/https://www.fch.europa.eu/page/FCH-valuechain</u>

²⁶ Fuel Cells and Hydrogen Joint undertaking. Study on Value Chain and Manufacturing Competitiveness Analysis for Hydrogen and Fuel Cells Technologies FCH contract 192 Findings Report – page 12. <u>https://wayback.archive-it.org/12090/20220602163936/https://www.fch.europa.eu/page/FCH-value-chain</u> - Taken from <u>https://wayback.archive-it.org/12090/20220602163936/https://www.fch.europa.eu/page/FCH-value-chain</u>

Lüers, Markus Lorenz, Esben Hegnsholt, Minjee Kim, Cornelius Pieper, and Katharina Meidert.

Installations. Henry Coles and Magnus Herrlin Energy Technologies Area.

³² KPMG Report for DCI, 2018, p. 34. The Icelandic Data Center Industry

³³ <u>KPMG Report for DCI, 2018, p. 10.</u> The Icelandic Data Center Industry

³⁴ European data Centre, 2020, p. 4. "2020: a tipping point for the industry" <u>https://re-search.euro.savills.co.uk/netherlands-pdfs/spotlight-eu-data-centre---2020.pdf</u>

Data & Analytics, Artificial Intelligence (AI) and – particularly – blockchain and video streaming. In 2019, data centres immersion cooling market was valued at USD 177 million, but the market is expected to grow at a CAGR of 23.2% in the reference period 2019-2024 and reach an estimated market size of USD 500 million by 2024³⁵.

³⁵ Immersion Cooling Market by Type (Single-Phase and Two-Phase), Application (High-Performance Computing, Edge Computing, Cryptocurrency Mining), Cooling Fluid, Components (Solutions, Services), and Geography – Global Forecast to 2030. <u>Markets and Markets report Immersion Cooling Market, 2019</u>

2. Appendix - list of identified PFAS

TABLE 9. Overview of PFASs (Glüge et al., 2020)³

CAS. No.	PFAS	Туре	Chemical Name	Pa- tented(P) Used(U) De- tected(D)
115-25-3	Non-poly- meric	Fluorina- ted gas	Perfluorocyclobutane	U
138495- 42-8	Non-poly- meric	Fluorina- ted gas	Pentane, 1,1,1,2,2,3,4,5,5,5-decafluoro-	U
163702- 05-4	Non-poly- meric	Fluorina- ted gas	Ethyl perfluorobutyl ether	U
163702- 06-5	Non-poly- meric	Fluorina- ted gas	Ethyl perfluoroisobutyl ether	U
163702- 07-6	Non-poly- meric	Fluorina- ted gas	Methyl perfluorobutyl ether	U
163702- 08-7	Non-poly- meric	Fluorina- ted gas	Methyl perfluoroisobutyl ether	U
22410-44- 2	Non-poly- meric	Fluorina- ted gas	Methyl pentafluoroethyl ether	Р
2356-62-9	Non-poly- meric	Fluorina- ted gas	1,1,1,2-Tetrafluoro-2-(trifluoromethoxy)ethane	U
354-33-6	Non-poly- meric	Fluorina- ted gas	1H-Pentafluoroethane	U
355-25-9	Non-poly- meric	Fluorina- ted gas	Perfluorobutane	U
355-42-0	Non-poly- meric	Fluorina- ted gas	Perfluorohexane	U
375-03-1	Non-poly- meric	Fluorina- ted gas	Methyl perfluoropropyl ether	U
406-78-0	Non-poly- meric	Fluorina- ted gas	Ethane, 1,1,2,2-tetrafluoro-1-(2,2,2-trifluoroethoxy)-	U
678-26-2	Non-poly- meric	Fluorina- ted gas	Perfluorpentane	U
692-49-9	Non-poly- meric	Fluorina- ted gas	(Z)-1,1,1,4,4,4-Hexafluoro-2-butene	
75-73-0	Non-poly- meric	Fluorina- ted gas	Carbon Tetrafluoride	
76-16-4	Non-poly- meric	Fluorina- ted gas	Perfluoroethane	U
76-19-7	Non-poly- meric	Fluorina- ted gas	Perfluoropropane	U

1064698- 37-8	Non-poly- meric	lonic	Reaction mass of 1,1,2,2,3,3,4,4,4-nonafluoro-N,Nbis(nonafluorobu- tyl)butan-1-amine and 1,1,2,2,3,3,4,4,4-nonafluoro-N-[1,1,2,3,3-hex- afluoro-2-(trifluoromethyl)propyl]-N-(1,1,2,2,3,3,4,4,4-nonafluorobu-	
1093615-	Non-poly-	lonic	tyl)butan-1-amine Reaction mass of 2,2,3,3,5,5,6,6-heptafluoropropan-2-yl)morpholine	
61-2	meric		and 2,2,3,3,5,5,6,6-octafluoro-4-(heptafluoropropyl)morpholine	
1107-00-2	Non-poly- meric	lonic	4,4'-(Perfluoro (propaneisopropylidene) diphthalic anhydride	
1186620- 71-2	Non-poly- meric	lonic	Diphenyl(p-tolyl)sulfonium 2-[(1-adamantylcarbonyl)oxy]-1,1-difluoro- ethane-1-sulfonate	
1311401- 25-8	Non-poly- meric	lonic	2-(2,2,3,3-Tetrafluoro-1-oxopropoxy)-1-[(2,2,3,3- tetrafluoro-1-oxopro- poxy)methyl]ethyl 2-methyl-2- propenoate	
133710- 62-0	Non-poly- meric	lonic	5-Norbornene-2,3-dicarboximidyltrifluoromethanesulfonate	
1414956- 62-9	Non-poly- meric	Ionic	n.a	
144317- 44-2	Non-poly- meric	lonic	Triphenylsulfonium perfluoro-1-butanesufonate	
153968- 00-4	Non-poly- meric	lonic	Ethanaminium, 2-[[(1,1,2,2,3,3,4,4,5,5,6,6,7,7,8,8,8-heptadecaflu- orooctyl) sulfonyl]amino]-N,N,N-trimethyl-sulfate (1:1)	Ρ
153968- 01-5	Non-poly- meric	Ionic	1-Propanaminium, 3-[[(1,1,2,2,3,3,4,4,5,5,6,6,7,7,8,8,8-heptadecaflu- orooctyl)sulfonyl]amino]-N,N,N-trimethyl-, sulfate (1:1)	Ρ
153968- 03-7	Non-poly- meric	lonic	1-Propanaminium, N,N,N-triethyl-3-[[(1,1,2,2,3,3,4,4,5,5,6,6,7,7,8,8,8- heptadecafluorooctyl)sulfonyl]amino]-, sulfate (1:1)	Р
153968- 05-9	Non-poly- meric	Ionic	1-Propanaminium, 3-[[(1,1,2,2,3,3,4,4,5,5,6,6,7,7,8,8,8-heptadecaflu- orooctyl) sulfonyl]methylamino]-N,N,N-trimethyl-, sulfate (1:1)	Ρ
1546-95-8	Non-poly- meric	Ionic	7H-Perfluoroheptanoic acid	Ρ
1652-63-7	Non-poly- meric	Ionic	1-Propanaminium, 3-[[(1,1,2,2,3,3,4,4,5,5,6,6,7,7,8,8,8-heptadecaflu- orooctyl)sulfonyl]amino]-N,N,N-trimethyl-, iodide (1:1)	Ρ
171417- 91-7	Non-poly- meric	Ionic	1-Butanesulfonic acid, 1,1,2,2,3,3,4,4,4-nonafluoro-, 1,3-dioxo-1H- benz[de]isoquinolin-2(3H)-yl ester	U
1763-23-1	Non-poly- meric	lonic	Perfluorooctane sulfonic acid (PFOS)	U
178094- 76-3	Non-poly- meric	Ionic	Perfluorobutane sulfonamido amine oxide	Р
194999- 85-4	Non-poly- meric	lonic	Bis(4-tert-butylphenyl)iodonium perfluoro-1-butanesulfonate	
19742-57- 5	Non-poly- meric	lonic	Heptanoic acid, 2,2,3,3,4,4,5,5,6,7,7,7-dodecafluoro-6-(trifluorome- thyl)-, ammonium salt (1:1)	Ρ
2144-53-8	Non-poly- meric	lonic	6:2 Fluorotelomer methacrylate	Ρ
220689- 12-3	Non-poly- meric	lonic	Tetrabutylphosphonium perfluorobutane sulfonate	Ρ
2227101- 44-0	Non-poly- meric	Ionic	n.a	
2252315- 46-9	Non-poly- meric	lonic	n.a	
229325- 98-8	Non-poly- meric	Ionic	di(4-t-butyl)phenyliodonium 2-trifluoromethylbenzenesulfonate	

2412106- 51-3	Non-poly- meric	lonic	Benzoic acid, 2,3,5-triiodo-, 2-[(1,1-dimethylethyl)[2-[(2,3,6-triiodoben- zoyl)oxy]ethyl]amino]ethyl ester, compd. with 1,1,2,2,3,3,4,4,4-nonaf- luoro-1-butanesulfonamide (1:1)	Ρ
2412106- 69-3	Non-poly- meric	Ionic	Benzoic acid, 2,3,6-triiodo-, (1-methyl-3-piperidinyl)methyl ester, compd. with 2,3,3,3-tetrafluoro-2-(1,1,2,2,3,3,3-heptafluoro propoxy)propanoate (1:1)	Ρ
2412106- 73-9	Non-poly- meric	Ionic	Butanedioic acid, 2,2,3,3-tetrafluoro-, compd. with 2-(diethyla- mino)ethyl 2,3,5-triiodobenzoate (1:2)	Ρ
259863- 01-9	Non-poly- meric	lonic	5-Fluoro-2,4,6-tris(trifluoromethyl)-pyrimidine	
2706-90-3	Non-poly- meric	Ionic	Perfluoropentanoic acid (PFPeA)	Ρ
27619-97- 2	Non-poly- meric	lonic	6:2 Fluorotelomer sulfonic acid (6:2 FTS)	U
2795-39-3	Non-poly- meric	Ionic	Potassium perfluorooctane sulfonate	U
289042- 19-9	Non-poly- meric	lonic	Potassium perfluorobutane sulfonamide	Ρ
29420-49- 3	Non-poly- meric	lonic	Potassium 1,1,2,2,3,3,4,4,4-nonafluorobutane-1-sulphonate	
2991-51-7	Non-poly- meric	lonic	Potassium N-ethyl perfluorooctane sulfonamidoacetate	U
30334-69- 1	Non-poly- meric	lonic	Perfluorobutane sulfonamide	Р
307531- 76-6	Non-poly- meric	lonic	N-Hydroxy-5-norbornene-2,3-dicarboximide perfluoro-1-butanesul- fonate	
3107-18-4	Non-poly- meric	Ionic	Cyclohexanesulfonic acid, 1,2,2,3,3,4,4,5,5,6,6-undecafluoro-, potas- sium salt (1:1)	Ρ
311-89-7	Non-poly- meric	lonic	Perfluorotributyl amine	U
314057- 01-7	Non-poly- meric	Ionic	Ammonium 6:2 fluorotelomer sulfonate	Ρ
335-67-1	Non-poly- meric	lonic	Perfluorooctanoic acid (PFOA)	U
336-08-3	Non-poly- meric	lonic	Hexanedioic acid, 2,2,3,3,4,4,5,5-octafluoro-	Р
34454-99- 4	Non-poly- meric	lonic	Perfluorobutane sulfonamidoethanol	Ρ
36913-91- 4	Non-poly- meric	lonic	Perfluorobutane sulfonic anhydride	U
375-22-4	Non-poly- meric	lonic	Perfluorobutanoic acid (PFBA)	D
375-73-5	Non-poly- meric	Ionic	Perfluorobutane sulfonic acid (PFBS)	U
376-34-1	Non-poly- meric	Ionic	Heptanoic acid, 2,2,3,3,4,4,5,5,6,6,7,7-dodecafluoro-, ammonium salt (1:1)	Ρ
38006-74- 5	Non-poly- meric	Ionic	1-Propanaminium, 3-[[(1,1,2,2,3,3,4,4,5,5,6,6,7,7,8,8,9,9,9-heptade- cafluoro octyl)sulfonyl]amino]-N,N,N-trimethyl-, chloride (1:1)	Ρ
382-28-5	Non-poly- meric	Ionic	Morpholine, 2,2,3,3,5,5,6,6-octafluoro-4-(trifluoromethyl)-	U

3825-26-1	Non-poly- meric	Ionic	Ammonium perfluorooctanoate	Ρ
39108-34- 4	Non-poly- meric	Ionic	8:2 Fluorotelomer sulfonic acid (8:2 FTS)	Ρ
39234-86- 1	Non-poly- meric	Ionic	3,5-Bis(trifluoromethyl)benzenesulfonyl chloride	
39847-39- 7	Non-poly- meric	lonic	Bis(1,1,2,2,3,3,4,4,4-nonafluoro-1-butanesulfonyl)imide	
40630-67- 9	Non-poly- meric	lonic	N-Ethyl perfluorobutane sulfonamide	Ρ
40630-68- 0	Non-poly- meric	lonic	1-Butanesulfonamide, 1,1,2,2,3,3,4,4,4-nonafluoro-N-(2-methoxy- ethyl)-	Ρ
423-92-7	Non-poly- meric	lonic	Perfluorooctane sulfonic anhydride	U
425670- 97-9	Non-poly- meric	lonic	Triphenylsulfonium, 2-(trifluoromethyl)benzenesulfonate(1:1)	
484024- 67-1	Non-poly- meric	lonic	Ammonium perfluorobutane sulfonamidoethanol	U
510774- 77-3	Non-poly- meric	lonic	Propanoic acid, 2,3,3,3-tetrafluoro-2-[1,1,2,3,3,3-hexafluoro-2-(trifluo- romethoxy)propoxy]-, ammonium salt (1:1)	Ρ
524067- 97-8	Non-poly- meric	lonic	lodonium, bis[4-(1,1-dimethylethyl)phenyl]-, salt with 1,1,2,2,3,3,4,4,4- nonafluoro-N-[(nonafluorobutyl)sulfonyl]-1- butanesulfonamide	
577705- 90-9	Non-poly- meric	lonic	benzyl(diethylamino)diphenylphosphonium 4-[1,1,1,3,3,3-hexafluoro- 2-(4-hydroxyphenyl)propan-2-yl]phenolate	
606967- 06-0	Non-poly- meric	lonic	1-Propanesulfonic acid, 3-[hexyl[(1,1,2,2,3,3,4,4,4-nonafluorobu- tyl)sulfonyl]amino]-2-hydroxy-, ammonium salt (1:1)	Ρ
639827- 02-4	Non-poly- meric	lonic	1H-Benz[de]isoquinoline-1,3(2H)-dione, 2-[[(heptadecafluorooctyl)sul- fonyl]oxy]-	U
639827- 04-6	Non-poly- meric	Ionic	1-Butanesulfonic acid, 1,1,2,2,3,3,4,4,4-nonafluoro-, 3,6-dihydro- 1,3,6-trioxo[1]benzothiopyrano[2,3-e]isoindol-2-yl ester	U
639827- 06-8	Non-poly- meric	lonic	1-Butanesulfonic acid, 1,1,2,2,3,3,4,4,4-nonafluoro-, 3,6-dihydro-8-(1- methylethyl)-1,3,6-trioxo[1]benzothiopyrano[2,3-e]isoindol-2-yl ester	U
66003-78- 9	Non-poly- meric	lonic	Triphenylsulfonium triflate	
68298-12- 4	Non-poly- meric	lonic	N-Methyl perfluorobutane sulfonamide	Ρ
68555-68- 0	Non-poly- meric	Ionic	Sodium N-ethyl perfluorobutane sulfonamidoacetate	Ρ
688361- 68-4	Non-poly- meric	Ionic	Sodium potassium perfluorobutane sulfonamidoacetic acid	Ρ
688738- 73-0	Non-poly- meric	Ionic	Potassium perfluorobutane sulfonamidoethanol	Ρ
688738- 74-1	Non-poly- meric	Ionic	Sodium perfluorobutane sulfonamidoacetic acid	Ρ
691358- 66-4	Non-poly- meric	Ionic	1-Heptanone, 1-(9H-fluoren-2-yl)-2,2,3,3,4,4,5,5,6,6,7,7-dodecaflu- oro-, O-[(1,1,2,2,3,3,4,4,4-nonafluorobutyl)sulfonyl]oxime	U
70225-14- 8	Non-poly- meric	Ionic	Diethanolammonium perfluorooctane sulfonate	U
749924- 57-0	Non-poly- meric	lonic	1-Butanone, 1-(9H-fluoren-2-yl)-2,2,3,3,4,4,4-heptafluoro-, O- [(1,1,2,2,3,3,4,4,4-nonafluorobutyl)sulfonyl]oxime	U

754-91-6	Non-poly- meric	lonic	Perfluorooctane sulfonamide	D
848352- 66-9	Non-poly- meric	lonic	1-Pentanone, 1-(9H-fluoren-2-yl)-2,2,3,3,4,4,5,5-octafluoro-, O- [(1,1,2,2,3,3,4,4,4-nonafluorobutyl)sulfonyl]oxime	Ρ
85342-62- 7	Non-poly- meric	lonic	N-Hydroxynaphthalimide trifluoromethanesulfonate	U
857285- 80-4	Non-poly- meric	lonic	tert-Butyl 2-[4-(diphenylsulphonium)phenoxy]acetate, nonaflate salt	
864069- 32-9	Non-poly- meric	Ionic	Butanoic acid, 4-[[(1,1,2,2,3,3,4,4,4-nonafluorobutyl)sulfonyl]propyla- mino]-, potassium salt (1:1)	Ρ
864069- 33-0	Non-poly- meric	lonic	1-Butanesulfonamide, N-butyl-1,1,2,2,3,3,4,4,4-nonafluoro-	Ρ
864069- 34-1	Non-poly- meric	lonic	Hexanoic acid, 6-[[(1,1,2,2,3,3,4,4,4-nonafluorobutyl)sulfonyl]propyla- mino]-, potassium salt (1:1)	Ρ
864069- 35-2	Non-poly- meric	lonic	Glycine, N-[(nonafluorobutyl)sulfonyl]-N-propyl-, sodium salt (1:1)	Ρ
864069- 36-3	Non-poly- meric	Ionic	Glycine, N-(2-methoxyethyl)-N-[(nonafluorobutyl)sulfonyl]-, sodium salt	Ρ
864069- 37-4	Non-poly- meric	Ionic	Sodium N-methyl perfluorobutane sulfonamidoacetate	Ρ
864069- 38-5	Non-poly- meric	Ionic	1-Propanesulfonic acid, 2-hydroxy-3-[methyl[(1,1,2,2,3,3,4,4,4-no- nafluorobutyl)sulfonyl]amino]-, sodium salt (1:1)	Ρ
864069- 39-6	Non-poly- meric	Ionic	1-Propanesulfonic acid, 3-[ethyl[(1,1,2,2,3,3,4,4,4-nonafluorobu- tyl)sulfonyl]amino]-2-hydroxy-, sodium salt (1:1)	Ρ
864069- 40-9	Non-poly- meric	lonic	1-Propanesulfonic acid, 2-hydroxy-3-[[(1,1,2,2,3,3,4,4,4-nonafluoro- butyl)sulfonyl]propylamino]-, sodium salt (1:1)	Ρ
864069- 41-0	Non-poly- meric	Ionic	1-Propanesulfonic acid, 3-[ethyl[(1,1,2,2,3,3,4,4,4-nonafluorobu- tyl)sulfonyl]amino]-, lithium salt (1:1)	Ρ
864069- 42-1	Non-poly- meric	Ionic	1-Propanesulfonic acid, 3-[[(1,1,2,2,3,3,4,4,4-nonafluorobutyl)sul- fonyl]propylamino]-, lithium salt (1:1)	Ρ
864069- 43-2	Non-poly- meric	Ionic	1-Propanesulfonic acid, 3-[butyl[(1,1,2,2,3,3,4,4,4-nonafluorobu- tyl)sulfonyl]amino]-, lithium salt (1:1)	Ρ
864069- 44-3	Non-poly- meric	Ionic	1-Propanesulfonic acid, 3-[methyl[(1,1,2,2,3,3,4,4,4-nonafluorobu- tyl)sulfonyl]amino]-, lithium salt (1:1)	Ρ
864069- 45-4	Non-poly- meric	lonic	Glycine, N-butyl-N-[(nonafluorobutyl)sulfonyl]-	Ρ
864069- 46-5	Non-poly- meric	lonic	Glycine, N-[(nonafluorobutyl)sulfonyl]-N-propyl-	Ρ
864069- 48-7	Non-poly- meric	Ionic	1-Propanesulfonic acid, 3-[butyl[(1,1,2,2,3,3,4,4,4-nonafluorobu- tyl)sulfonyl]amino]-2-hydroxy-, ammonium salt (1:1)	Ρ
864069- 49-8	Non-poly- meric	Ionic	1-Propanesulfonic acid, 2-hydroxy-3-[[(1,1,2,2,3,3,4,4,4-nonafluoro- butyl)sulfonyl]propylamino]-, ammonium salt (1:1)	Ρ
864069- 50-1	Non-poly- meric	Ionic	1-Propanesulfonic acid, 3-[(2-hydroxyethyl)]((1,1,2,2,3,3,4,4,4-nonaflu- orobutyl)sulfonyl]amino]-, lithium salt (1:1)	Ρ
864069- 51-2	Non-poly- meric	Ionic	1-Butanesulfonic acid, 4-[(2-hydroxyethyl)]((1,1,2,2,3,3,4,4,4-nonaflu- orobutyl)sulfonyl]amino]-, lithium salt (1:1)	Ρ
864069- 52-3	Non-poly- meric	Ionic	1-Propanaminium, N,N-dimethyl-N-[3-[[(1,1,2,2,3,3,4,4,4-nonafluoro- butyl)sulfonyl]amino]propyl]-3-sulfo-, inner salt	Ρ
864069- 53-4	Non-poly- meric	lonic	Glycine, N-hexyl-N-[(nonafluorobutyl)sulfonyl]-, potas-sium salt	Ρ

912290- 04-1	Non-poly- meric	Ionic	Triphenylsulfonium salt with 1-[(3-hydroxytricyclo[3.3.1.13,7]dec-1- yl)methyl] 2,2-difluoro-2-sulfoacetate (1:1)	
94817-79- 5	Non-poly- meric	Ionic	2-Undecanol, 3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,11,11,11-nonadecaflu- oro-1-[(1-methylpropyl)amino]-	Ρ
94817-80- 8	Non-poly- meric	Ionic	2-Dodecanol, 4,4,5,5,6,6,7,7,8,8,9,9,10,10,11,11,12,12,12-nonadeca- fluoro-1-[(1-methylpropyl)amino]-	Ρ
94817-82- 0	Non-poly- meric	lonic	1-Pentadecanamine, N,N-dibutyl-3,3,4,4,5,5,6,6,7,7,8,8,9,9, 10,10,11,11,12,12,13,13,14,14,15,15,15-heptacosafluoro-, nitrate (1:1)	Ρ
94817-83- 1	Non-poly- meric	lonic	1-Tridecanesulfonamide, 1,1,2,2,3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,11,11, 12,12,13,13,13-hepta- cosafluoro-N-propyl-, hydrochlo-ride (1:1)	Ρ
96513-97- 2	Non-poly- meric	Ionic	Propanoic acid, 2,3,3,3-tetrafluoro-2-(1,1,2,2,3,3,4,4,4-nonafluorobu- toxy)-, ammonium salt (1:1)	Р
102116- 02-9	Non-poly- meric	Non-ionic	9,11,11,12,14,14,15,15,16,16,16-Undecafluoro-3,3-dimethoxy-9,12- bis(trifluoromethyl)-2,7,10,13-tetraoxa-3-silahexadecane	
102488- 47-1	Non-poly- meric	Non-ionic	Silane, chlorodimethyl(3,3,4,4,5,5,6,6,7,7,8,8,8-tridecafluorooctyl)-	Ρ
1064697- 81-9	Non-poly- meric	Non-ionic	Reaction mass of 1,1,1,2,2,3,3,4,4,5,5,6,6,6-tetradecafluorohexane and 1,1,1,2,2,3,3,4,5,5,5-undecafluoro-4-(trifluoromethyl)pentane	
116265- 66-8	Non-poly- meric	Non-ionic	Perfluoroperhydrobenzyl tetralin	U
1256753- 06-6	Non-poly- meric	Non-ionic	trans-2-[4'-[difluoro(3,4,5-trifluorophenoxy)methyl]-2,3',5'-trifluoro[1,1'- biphenyl]-4-yl]-5-butyl-1,3-dioxane	
132182- 92-4	Non-poly- meric	Non-ionic	Pentane, 1,1,1,2,2,3,4,5,5,5-decafluoro-3-methoxy-4-(trifluoromethyl)-	U
133937- 72-1	Non-poly- meric	Non-ionic	1-(4-trans-Propyl-[1,1-bicyclohexyl]-4-trans-yl)-4-trifluormethoxyben- zene	
135734- 60-0	Non-poly- meric	Non-ionic	1-(trans-4-Butyl[trans-1,1-bicyclohexyl]-4-yl)-4-trifluormethoxyben- zene	
1431551- 16-4	Non-poly- meric	Non-ionic	SUBELYN series®	
15290-77- 4	Non-poly- meric	Non-ionic	1,1,2,2,3,3,4-heptafluorocyclopentane	
15538-93- 9	Non-poly- meric	Non-ionic	Silane, trichloro[3-[1,2,2,2-tetrafluoro-1-(trifluoromethyl) ethoxy]pro- pyl]-	Ρ
159148- 08-0	Non-poly- meric	Non-ionic	1-Hexene, 3,3,4,4,5,5,6,6-octafluoro-	Ρ
173524- 60-2	Non-poly- meric	Non-ionic	Propanamide, 2,3,3,3-tetrafluoro-2-[1,1,2,3,3,3-hexafluoro-2-(hep- tafluoropropoxy)propoxy]-N-[3-(,4,6,8-tetramethylcyclotetrasiloxan-2- yl)propyl]- (9CI)	
1805-22-7	Non-poly- meric	Non-ionic	Perfluoromethylcyclopentane	U
208338- 50-5	Non-poly- meric	Non-ionic	(trans,trans)-5-{(4-Propyl[1,1-bicyclohexyl]-4-yl)-difluormethoxy}- 1,2,3-trifluorbenzene	
2252-84-8	Non-poly- meric	Non-ionic	1H-Heptafluoropropane	Ρ
2416059-	Non-poly-	Non-ionic	SUBELYN series®	

2570936- 33-1	Non-poly- meric	Non-ionic	SUBELYN series®	
297730- 93-9	Non-poly- meric	Non-ionic	3-Ethoxy-1,1,1,2,3,4,4,5,5,6,6,6-dodecafluoro-2-(trifluoromethyl)he- xane	U
303186- 20-1	Non-poly- meric	Non-ionic	4-[Difluor(3,4,5-trifluorphenoxy)methyl]-3,5-difluor-4'-propyl-1,1'-bi- phenyl	
303186- 36-9	Non-poly- meric	Non-ionic	4-[difluoro(3,4,5-trifluorophenoxy)methyl]-2',3,5-trifluoro-4"-propyl- 1,1':4',1"-terphenyl	
306-91-2	Non-poly- meric	Non-ionic	Perfluorotetradecahydrophenanthrene	U
306-92-3	Non-poly- meric	Non-ionic	Perfluoromethyldecalin	U
306-94-5	Non-poly- meric	Non-ionic	Perfluorodecalin	U
306-98-9	Non-poly- meric	Non-ionic	Perfluoro-1,2-dimethylcyclohexane	U
307-08-4	Non-poly- meric	Non-ionic	Perfluoroperhydrofluorene	U
319-82-4	Non-poly- meric	Non-ionic	1,2,3,5-Tetrafluoro-4,6-bis(trifluoromethyl)benzene	
335-27-3	Non-poly- meric	Non-ionic	Perfluoro(1,3-dimethylcyclohexane)	U
335-57-9	Non-poly- meric	Non-ionic	Perfluoroheptane	U
338-83-0	Non-poly- meric	Non-ionic	Perfluamine	
338-84-1	Non-poly- meric	Non-ionic	Perfluorotripentyl amine	Ρ
354-97-2	Non-poly- meric	Non-ionic	Perfluoro-2-methyl-3-ethylpentane	U
355-02-2	Non-poly- meric	Non-ionic	Perfluoromethylcyclohexane	U
355-04-4	Non-poly- meric	Non-ionic	Perfluoro-2-methylpentane	U
355-27-3	Non-poly- meric	Non-ionic	Perfluoro-1,3-dimethylcyclohexane	U
374-80-1	Non-poly- meric	Non-ionic	Perfluoroindane	U
375-96-2	Non-poly- meric	Non-ionic	Perfluorononane	Ρ
402-31-3	Non-poly- meric	Non-ionic	$\alpha, \alpha, \alpha, \beta, \beta, \beta$ -hexafluoro-m-xylene	
434-64-0	Non-poly- meric	Non-ionic	1,2,3,4,5-Pentafluoro-6-(trifluoromethyl)benzene	
50285-18- 2	Non-poly- meric	Non-ionic	Perfluoro-2,4-dimethyl-3-ethylpentane	U
5121-76-6	Non-poly- meric	Non-ionic	2,2',3,3',4,5,5',6,6'-Nonafluoro-4'-(trifluoromethyl)-1,1'-biphenyl	
514-03-4	Non-poly- meric	Non-ionic	1-Butanamine, 1,1,2,2,3,3,4,4,4-nonafluoro-N-(1,1,2,2,3,3,4,4,4-no-nafluorobutyl)-N-(trifluoromethyl)-	Ρ

51851-37- 7	Non-poly- meric	Non-ionic	Tridecafluorooctyltriethoxysilane	Р
524709- 77-1	Non-poly- meric	Non-ionic	2',3,5-Trifluoro-4''-(trans-4-propylcyclohexyl)-4-trifluoromethoxy- [1,1';4',1"]terphenyl	
559-40-0	Non-poly- meric	Non-ionic	Perfluorocyclopentene	Ρ
58432-61- 4	Non-poly- meric	Non-ionic	2-(2,3,5,6-Tetrafluoro-4-(trifluoromethyl)phenyl)acetonitrile	
606966- 46-5	Non-poly- meric	Non-ionic	1-Butanesulfonamide, 1,1,2,2,3,3,4,4,4-nonafluoro-N-hexyl-	Ρ
639782- 56-2	Non-poly- meric	Non-ionic	9H-Fluoren-9-one, O-[(1,1,2,2,3,3,4,4,4-nonafluorobutyl)sulfonyl]ox- ime	U
64028-06- 4	Non-poly- meric	Non-ionic	2,5,8,11,14-Pentaoxapentadecane, 1,1,1,3,3,4,4,6,6,7,7,9,9,10,10,12,12,13,13,15,15,15,15-docosafluoro-	Ρ
647-42-7	Non-poly- meric	Non-ionic	3,3,4,4,5,5,6,6,7,7,8,8,8-tridecafluorooctan-1-ol	
662-28-2	Non-poly- meric	Non-ionic	Perfluoroperhydrofluoranthene	U
685-63-2	Non-poly- meric	Non-ionic	C4F6 (Hexafluoro-1,3-butadiene)	
697-11-0	Non-poly- meric	Non-ionic	Perfluorocyclobutene	Ρ
700863- 48-5	Non-poly- meric	Non-ionic	Trans-2-[4'-[Difluor(3,4,5-trifluorphenoxy)methyl]-3',5'-difluor[1,1'- biphenyl]-4-yl]-5-propyl-tetrahydro-2H-pyran	
705291- 24-3	Non-poly- meric	Non-ionic	Cyclotetrasiloxane, 2,4,6,8-tetramethyl-, Si-mixed 3-(2-oxiranyl- methoxy)propyl and 3-[2,3,3,3-tetrafluoro-2-[1,1,2,3,3,3-hexafluoro-2- (1,1,2,2,3,3,3-heptafluoropropoxy)propoxy]propoxy]propyl and 2-(tri- methoxysilyl)ethyl derivs.	
717825- 76-8	Non-poly- meric	Non-ionic	7,7-Dibutyl-13,15,15,16,18,18,19,19,20,20,20-undecafluoro-3-methyl- 13,16-bis(trifluoromethyl)-6,11,14,17-tetraoxa-7-silaicos-1-yn-3-ol	
73609-36- 6	Non-poly- meric	Non-ionic	Silane, dichloromethyl(3,3,4,4,5,5,6,6,7,7,8,8,8-tridecafluorooctyl)-	Ρ
74612-30- 9	Non-poly- meric	Non-ionic	Silane, chloro-dimethyl(3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,10-heptade-cafluorodecyl)-	Ρ
756-13-8	Non-poly- meric	Non-ionic	Perfluoro-2-methyl-3-pentanone	U
756819- 73-5	Non-poly- meric	Non-ionic	2,4,6,8-Tetramethyl-2-(3-{2,3,3,3-tetrafluoro-2-[hexafluoro-2-(hep- tafluoropropo-xy)propoxy]propoxy}propyl)cyclotetrasiloxane	
78560-44- 8	Non-poly- meric	Non-ionic	Silane, trichloro(3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,10-heptadecafluoro-decyl)-	Ρ
78560-45- 9	Non-poly- meric	Non-ionic	Silane, trichloro(3,3,4,4,5,5,6,6,7,7,8,8,8-tridecafluorooctyl)-	Ρ
787582- 75-6	Non-poly- meric	Non-ionic	2-[4'-[difluoro(3,4,5-trifluorophenoxy)methyl]-3',5'-difluoro[1,1'-biphe- nyl]-4-yl]-5-ethyltetrahydro-2H-pyran	
798556- 07-7	Non-poly- meric	Non-ionic	Trans-2-{4-[difluoro(3,4,5-trifluorophenoxy)methyl]-3,5-difluorophe- nyl}-5-(trans-4-propylcyclohexyl)-1,3-dioxane	
83048-65- 1	Non-poly- meric	Non-ionic	Heptadecafluorodecyltrimethoxysilane	Ρ
85643-63- 6	Non-poly- meric	Non-ionic	Poly(oxy-1,2-ethanediyl), α-(4,4,5,5,6,6,7,7,8,8,9,9,10,10,11, 11,12,12,12-nonadecafluoro-2-hydroxydodecyl)-ω-methoxy-	Ρ

85720-78- 1	Non-poly- meric	Non-ionic	Pentane, 1,1,1,2,3,4,5,5,5-nonafluoro-2-(trifluoromethyl)-	Р
85857-16- 5	Non-poly- meric	Non-ionic	Tridecafluorooctyltrimethoxysilane	Ρ
86508-42- 1	Non-poly- meric	Non-ionic	Perfluorotri-n-butylamine; Fluorinert™ FC-40	U
870778- 34-0	Non-poly- meric	Non-ionic	Pentane, 1,1,1,2,3,3-hexafluoro-4-(1,1,2,3,3,3-hexafluoropropoxy)-	Ρ
90278-32- 3	Non-poly- meric	Non-ionic	trans-1-[4-(4-Propylcyclohexyl)-1-cyclohexen-1-yl]-4- (trifluoromethyl)- benzene	
914087- 74-4	Non-poly- meric	Non-ionic	4"-butyl-4-[difluoro(3,4,5-trifluorophenoxy)methyl]-2',3,5-trifluoro- 1,1':4',1"-terphenyl	
916156- 32-6	Non-poly- meric	Non-ionic	4-[difluoro(3,4,5-trifluorophenoxy)methyl]-2',3,5-trifluoro-4"-pentyl- 1,1':4',1"-terphenyl	
920-66-1	Non-poly- meric	Non-ionic	1,1,1,3,3,3-hexafluoropropan-2-ol	
957209- 18-6	Non-poly- meric	Non-ionic	2,3,3,4,4-pentafluoro-5-methoxy-2,5-bis[1,2,2,2-tetrafluoro-1-(triflu- oromethyl)ethyl]tetrahydrofuran	
n.a.(EC 700-755- 2)	Non-poly- meric	Non-ionic	Methoxytridecafluoroheptene isomers	
101182- 89-2	Polymeric	FP	Poly(1,1,2,4,4,5,5,6,7,7-decafluoro-3-oxa-1,6-heptadiene)	
24937-79- 9	Polymeric	FP	Poly(vinylidene fluoride)	U
25038-71- 5	Polymeric	FP	Ethylene tetrafluoroethylene copolymer	U
25067-11- 2	Polymeric	FP	Fluorinated ethylene propylene	U
25101-45- 5	Polymeric	FP	Ethylene chlorotrifluoroethylene	
25190-89- 0	Polymeric	FP	1-Propene, 1,1,2,3,3,3-hexafluoro-, polymer with 1,1-difluoroethene and tetrafluoroethene	
26425-79- 6	Polymeric	FP	1,1,2,2-tetrafluoroethene;1,1,2-trifluoro-2-(trifluoromethoxy)ethene	
26655-00- 5	Polymeric	FP	Perfluoroalkoxy polymer (PFA)	U
27029-05- 6	Polymeric	FP	1-Propene, polymer with 1,1,2,2-tetrafluoroethene	
31784-04- 0	Polymeric	FP	tetrafluoroethylene/trifluorovinyl pentafluoroethyl ether copolymer	
56357-87- 0	Polymeric	FP	Tetrafluoroethene polymer with 1,1-difluoroethene and trifluoro(trifluo- romethoxy)ethene	
63654-41- 1	Polymeric	FP	1,1,1,2,2,3,3-heptafluoro-3-(1,2,2-trifluoroethenoxy)pro- pane;1,1,2,3,3,3-hexafluoroprop-1-ene;1,1,2,2-tetrafluoroethene	
661476- 43-3	Polymeric	FP	Butanoic acid, 2,2,3,3,4,4-hexafluoro-4-[(trifluoroethenyl)oxy]-, methyl ester, homopolymer, hydrolyzed	
68258-85- 5	Polymeric	FP	Ethene;3,3,4,4,5,5,6,6,6-nonafluorohex-1-ene;1,1,2,2-tetrafluoro- ethene	

9002-83-9	Polymeric	FP	Polychlorotrifluoroethylene	U
9002-84-0	Polymeric	FP	Polytetrafluoroethylene (PTFE)	U
9011-17-0	Polymeric	FP	1,1-Difluoretylen-hexafluorpropenpolymer	
n.a.	Polymeric	FP	EFEP: Copolymer of ethylene, tetrafluoroethylene, and hexafluoro- propylene	
	Polymeric	FP	Ethene, 1,1,2,2-tetrafluoro-, polymer with 1,1'-oxybis[ethene]	Р
105060- 59-1	Polymeric	PFPE	$\label{eq:poly_constraint} \begin{array}{l} \mbox{Poly}[\mbox{oxy}(1,1,2,2,3,3-\mbox{hexafluoro-1,3-propanediyl})], $$$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$	U
113114- 19-5	Polymeric	PFPE	Fluorinated polymer of 2,2,3,3-tetrafluorooxetane	
1214752- 87-0	Polymeric	PFPE	Borate(1-), tetrahydro-, sodium (1:1), reaction products with reduced polymd. oxidized tetrafluoroethylene, hydrolyzed, diallyl ethers, polymers with 2,4,6,8-tetramethylcyclotetrasiloxane, Si-(8,13-dioxo-4,7,12-trioxa-9-azapentadec-14-en-1-yl) derivs.	
1378309- 01-3	Polymeric	PFPE	3-{2,4,6,8-Tetramethyl-4,6,8-tris[3-(trimethoxysilyl)propyl]cyclotetra- siloxan-2-yl}propyl ether of reduced fluorinated reduced polymerized oxidized 1,1,2,2-tetrafluoroethene	
1381840- 48-7	Polymeric	PFPE	SIFEL2000®	
161075- 02-1	Polymeric	PFPE	Ethene, 1,1,2,2-tetrafluoro-, oxidized, polymd., reduced, decarbox- ylated	U
215805- 19-9	Polymeric	PFPE	SIFEL8000®	
264142- 24-7	Polymeric	PFPE	Poly[oxy[trifluoro(trifluoromethyl)-1,2-ethanediyl]], α-[1-[[bis[3-(tri- methoxysilyl)propyl]amino]carbonyl]-1,2,2,2-tetrafluoroethyl]-ω- (1,1,2,2,3,3,3-heptafluoropropoxy)-	
26684-76- 8	Polymeric	PFPE	Poly[tetrafluoroethylene-co-perfluoro (alkyl vinyl ether)]	
467233- 25-6	Polymeric	PFPE	Bis[3-(trimethoxysilyl)propyl] ether of hydrolyzed [reaction product of (reduced polymerized oxidized tetrafluoroethene) and sodium tetrahy- droboranuide]	
60164-51- 4	Polymeric	PFPE	Poly[Oxy[Trifluoro(Trifluoromethyl)-1,2-Ethanediyl]], .Alpha(Pentaflu- oroethyl)Omega[
69991-61- 3	Polymeric	PFPE	Polymerised oxidized 1,1,2,2-tetrafluoroethene	
69991-67- 9	Polymeric	PFPE	1-Propene, 1,1,2,3,3,3-hexafluoro-, oxidized, polymd.	
753501- 40-5	Polymeric	PFPE	Boron, trifluoro(tetrahydrofuran)-, (T-4)-, polymer with 3-methyl-3- [(2,2,3,3,3-pentafluoropropoxy)methyl]oxetane, ether with 2,2-dime- thyl-1,3-propanediol (2:1)	
802935- 59-7	Polymeric	PFPE	Reaction product of (polymer of 2,3,3,3-tetrafluoro-2-[1,1,2,3,3,3-he- xafluoro-2-(heptafluoropropoxy)propoxy]propanoyl fluoride / 2,2,3- trifluoro-3-(trifluoromethyl)oxirane), 3-[dimethyl(vinyl)silyl]-N-methyla- niline and 2,4,6,8-tetramethylcyclotetrasiloxane	
851389- 08-7	Polymeric	PFPE	2-Propenoic acid, 1,1-dimethylethyl ester, polymer with 4,5-difluoro- 2,2-bis(trifluoromethyl)-1,3-dioxole and tetrafluoroethene	Ρ
852533- 63-2	Polymeric	PFPE	Propanoic acid, 2,3,3,3-tetrafluoro-2-[(1,1,2-trifluoro-2-propen-1-yl)oxy]-, homopolymer	

86179-28- 4	Polymeric	PFPE	Propanoic acid, 3-[1-[difluoro[(1,2,2-trifluoro ethenyl)oxy]methyl]- 1,2,2,2-tetrafluoroethoxy]-2,2,3,3-tetrafluoro-, methyl ester, polymer with 4,5-difluoro-2,2-bis(trifluoromethyl)-1,3-dioxole and 1,1,2,2-tetra- fluoroethene	Ρ
910114- 98-6	Polymeric	PFPE	2-Propenoic acid, 4,4,5,5,6,6,7,7,7-nonafluoro-2-hydroxyheptyl ester, polymer with 2-methyl-2-[(1-oxo-2-propen-1-yl)amino]-1-propanesul- fonic acid	Ρ
934505- 67-6	Polymeric	PFPE	2-Propenoic acid, polymer with 2-ethenylnaphthalene and 4,4,5,5,6,6,7,7,8,8,9,9,10,10,11,11,11-heptadecafluoro-2-hy-droxyundecyl 2-propenoate	Ρ
1005771- 59-4	Polymeric	SCFP	Si-[3-(Oxiran-2-ylmethoxy)propyl] derivative of 2,4,6,8-tetramethyl-2- (3-{2,3,3,3-tetrafluoro-2-[1,1,2,3,3,3-hexafluoro-2-(1,1,2,2,3,3,3-hep- tafluoropropoxy)propoxy]propoxy}propyl)cyclotetrasiloxane	
1010423- 83-2	Polymeric	SCFP	Siloxanes and Silicones, Me hydrogen, [[7,9,9,10,12,12,13,13,14,14,14-undecafluoro-1,1-dimethyl-7,10- bis(trifluoromethyl)-5,8,11-trioxa-1-silatetradec-1-yl]oxy]-terminated	
1108730- 36-4	Polymeric	SCFP	tert-Butyl 2-ethylperoxyhexanoate initiated polymer of alpha- methacryloyl-omega-hydroxypoly[oxy(methylethylene)] / 3,3,4,4,5,5,6,6,7,7,8,8,8-tridecafluorooctyl acrylate	
1538576- 70-3	Polymeric	SCFP	Reaction products of allyl(chloro)magnesium, (methyl esters of fluori- nated reduced polymerized oxidized tetrafluoroethene) and trimethox- ysilane	
1644456- 24-5	Polymeric	SCFP	Magnesium, chloro-2-propen-1-yl-, reaction products with 3-bromo-1- propene, Me esters of fluorinated reduced polymd. oxidized tetrafluo- roethylene and trimethoxysilane	
166242- 54-2	Polymeric	SCFP	Propanoyl fluoride, 2,2'-[(1,1,2,2-tetrafluoro-1,2-etha- nediyl)bis(oxy)]bis[2,3,3,3-tetrafluoro-, polymer with trifluoro(trifluoro- methyl)oxirane, reaction products with 3-(ethenyldimethylsilyl)-n- methylbenzenamine	
172083- 53-3	Polymeric	SCFP	2-Propenoic acid, 3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,10-heptade- cafluorodecyl ester, polymer with 2-methyl-2-[(1-oxo-2-propen-1- yl)amino]-1-propane sulfonic acid and 2,2,2-trifluoroethyl 2-propeno- ate	Ρ
176894- 23-8	Polymeric	SCFP	Methyl 2-methyl-2-propenoate polymer with 3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,10-heptadecafluorodecyl 2-propenoate, methyloxirane polymer with oxirane mono-2-propenoate, α -(2-methyl-1-oxo-2-propenyl)- ω -[(2-methyl-1-oxo-2-propenyl)oxy]poly(oxy-1,2-ethanediyl	
185701- 88-6	Polymeric	SCFP	Propanoyl fluoride, 2,3,3,3-tetrafluoro-2-(1,1,2,3,3,3-hexafluoro-2- (heptafluoropropoxy)propoxy)-, polymer with trifluoro(trifluoro- methyl)oxirane, reaction products with 3-(ethenyldimethylsilyl)-n- methylbenzenamine;	
241148- 23-2	Polymeric	SCFP	Reaction product of {polymer of 2,3,3,3-tetrafluoro-2-[1,1,2,3,3,3-he-xafluoro-2-(heptafluoropropoxy)propoxy]propanoyl fluoride / 2,2,3-trifluoro-3-(trifluoromethyl)oxirane}, 3-[dimethyl(vinyl)silyl]-N-methyla-niline and 3,3'-(3,3,4,4,5,5,6,6,7,7,8,8-dodecafluorodecane-1,10-diyl)bis{3-[(dimethylsilyl)oxy]-1,1,5,5-tetramethyltrisiloxane}	
910114- 99-7	Polymeric	SCFP	2-Propenoic acid, 4,4,5,5,6,6,7,7,7-nonafluoro-2-hydroxyheptyl ester, polymer with 2-propene-1-sulfonic acid	Ρ
94797-81- 6	Polymeric	SCFP	Poly(oxy-1,2-ethanediyl), α-(2,2,3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,10- nonadecafluoro-1-oxodecyl)-ω-methoxy-	Ρ
94797-96- 3	Polymeric	SCFP	Poly(oxy-1,2-ethanediyl), α -[2-(acetyloxy)- 4,4,5,5,6,6,7,7,8,8,9,9,10,10,11,11,12,12,13,13,14,14,15,15,16,16,16-heptacosafluorohexadecyl]- ω -(4-nonylphenoxy)-	Ρ

94817-10- 4	Polymeric	SCFP	Poly(oxy-1,2-ethanediyl), α -(4,4,5,5,6,6,7,7,8,8,9,9,10, 10,11,11,12,12,12-nonadecafluoro-2-hydroxydodecyl)- ω -(3-hydro-xypropoxy)-	Ρ
949573- 37-9	Polymeric	SCFP	1,1,1-Trifluoro-2-hydroxy-6-methyl-2-(trifluoromethyl)-heptane-4-yl methacrylate	
n.a.	Polymeric	SCFP	Methylmethacrylate-fluoroakylmethacrylate-methacrylic acid copoly- mer	
1233945- 78-2	Polymeric	Unknown	n.a	
1375105- 65-9	Polymeric	Unknown	n.a	
1446241- 82-2	Polymeric	Unknown	n.a	
497061- 37-7	Unknown	Unknown	n.a.	

3. Appendix - Non-PFAS alternatives

Tabel A, B & C in this appendix included information from stakeholders and publicly available information. If no reference is provided, the information is from stakeholders.

Use category	Function per- formed / sub use	Non-PFAS alternati- ves identified	Comments by stakeholders / Addi- tional information
Wires and cables: Heating cables, coax- ial cable	Insulation/Fire prevention	 Plastics (PVC), polyethy- lene (PE), polypropylene (PP), etc.) 	PVC and silicone are considered good alter- natives for wire insulation. However, their en- vironmental impact may be significant.
		• Rubbers (neoprene, sili- cone, etc.) ^{36 37 38}	PVC and PE are less flexible and lack perfor- mance at extreme temperature variations.
		 Polyether ether ketone (PEEK), Mica, Ethylene propylene diene mono- mer (EPDM) 	Mica and EPDM have drawbacks – heavier, lower chemical resistance, lack of insulation and flame retardance, low dielectric constant. Inferior electrical properties resulting in lower
		Ceramic based	data transmission speed.
		 For coating: Low- and high-density PE, PVC, Polyamide (PA), nylon³⁹ 	PEEK performs well at high temperature, but lack of flexibility makes use in aerospace difficult.
		• Polyurethane (PUR), ny- lon, and chlorinated poly- ethylene (CPE) ^{Fejl! Bogmærke} er ikke defineret.	Ceramic based alternatives have an overall worse combination of properties, the main is- sue would be an increase in weight.
			Alternatives for coating have a higher dielec- tric constant, dielectric voltage breakdown, low DC resistance, low melting point and ser- vice temp low water absorption.
			PVC, PP, PA, PUR, low- and high-density PE, nylon and CPE were tested for oxidation, heat, oil, sun, ozone, abrasion, flame, nuclear

Table 10. Non-PFAS alternatives identified in the electronics sector

paints-varnishes.pdf

³⁶ High-Temperature Wire: Silicone vs Teflon. <u>https://www.sycor.com/blog/post/silicone-vs-teflon</u>

³⁷ Wire Insulation Types and Purposes Explained (jemelectronics.com) <u>https://blog.jemelectron-</u> <u>ics.com/wire-insulation-types-explained</u>

³⁸ PVC vs Teflon Insulated Wire. <u>https://www.electroprep.com/blog/pvc-vs-teflon-insulated-wire/</u>

³⁹ OECD, 2022. Per- and Polyfluoroalkyl Substances and Alternatives in Coatings, Paints and Varnishes (CPVs). Series on Risk Management No.70. OECD, 2022 CPVs. <u>https://www.oecd.org/chemicalsafety/portal-perfluorinated-chemicals/per-and-polyfluoroalkyl-substances-alternatives-in-coatings-</u>

Use category	Function per- formed / sub use	Non-PFAS alternati- ves identified	Comments by stakeholders / Addi- tional information
			radiation, water, acid, alkali, aliphatic hydro- carbons, halogenated hydrocarbons, alcohol resistance, low temperature flexibility, electri- cal properties, and underground burial. Most alternatives scored well on some or all pro- perties. ^{Fejl Bogmærke er ikke defineret.}
	Insulation/heat resistance also in combination with specific sensors	Rubbers (neoprene, sili- cone, etc.)	Rubbers have less mechanical strength and less abrasion resistance. Thicker insulation might be needed or additional mechanical support. Silicone insulation will lead to chemi- cal deposition on the sensors, making them malfunction.
Coatings of electronic components	Coating of smart phone and screens: Dirt, scratch, smudge resistance	 Silica-based, polymethyl- methacrylate powder^{Fejl!} Bogmærke er ikke defineret. 	
	Coating of touchscreen dis- plays, camera glass, mousepads, back glass	Silicone-based	Silicone alternatives would create dysfunction in haptics - blocking transmission to sensors in touchscreens
	Coating of ICT equipment with imaging sensors	Silicone-based	Silicone absorbs oil, is sticky, and causes cross contamination which leads to adhesion loss of other components.
	Coating of PCB	• Acrylic resin, epoxy, ure- thane resin, silicone resin ⁴⁰	
	Pulsed plasma nano-coating	 Epoxy, urethane, acrylic, silicone, parallyne⁴¹ PFAS free nano-coa- tings⁴² 	
Etching agent	Etching of piezo- electric filters	Alternative substance(s) not available or unknown	One fluorine alternative identified: fluoroboric acid
Liquid crystal dis- plays (LCD)	Surface protec- tion (for displays)	 Cyano group instead of CF3 	Decreased performance.
Capacitators	Dielectric films	• Various other polymers such as: PP, PE, polysty- rene, polycarbonate, po- lyethylene naphthalate, polyphenyl sulfide, poly- ester imides, polyethyle-	

⁴⁰ Types of Conformal Coating: Exploring materials for enhanced PCP protection. <u>https://blog.ma-</u> <u>tric.com/types-of-conformal-coating-pcb-protection</u>

 ⁴¹ Nanocoatings: The Solution to All of Our Environmental Protection Problems? 2015 NREL Photovoltaic Module Reliability Workshop. <u>https://www.nrel.gov/pv/assets/pdfs/2015_pvmrw_133_caswell.pdf</u>
 ⁴² Ultra Thin Plasma Coating. P2i. https://www.p2i.com/solutions/

Use category	Function per- formed / sub use	Non-PFAS alternati- ves identified	Comments by stakeholders / Addi- tional information
Acoustic equipment	Electrical signal; Piezoelectrical material	Ceramic piezoelectric materials, piezoelectric crystals ⁴³	
Flat panel display, light management film	Electrical insula- tion / dust repel- lency	 Various other polymers such as: polyester poly- carbonate⁴⁴ 	
Adaptors, power sup- ply units, wires	V0 flame retar- dancy plastics	 (Unspecified) brominated flame retardants, (un- specified) chlorinated flame retardants 	
Electronics manufac- turing equipment & in- frastructure - Ena- bling uses of fluoro- polymer articles (poly- mer parts embedded within manufacturing equipment, spare parts and infrastruc- ture, piping, tubing, gaskets, seals etc.)	Packaging, air moisture re- sistance	• Other moisture and vapor-barrier packaging, such as mylar ⁴⁵	
Heat transfer fluids	General heat transfer, immer- sion cooling, evaporative cool- ing, brine cool- ing, direct con- tact cooling	• Various proprietary blends based on "ester chemistry" and others, and generally said to be biodegradable and often halogen free ^{46 47}	
Sealing for electronic components	Sealing for LCD, home appliance production equip- ment, sealing for reducer of indus- trial robot for au- tomation, sealing	EPDMSilicone rubbers	Lack of heat resistance, chemical resistance, water vapour barrier and flame-retardant properties. Failure of the seal material to maintain a tight seal due to deterioration (leakage of solution from inside the compo- nent or, conversely, penetration of liquid from outside the component).

⁴³ Precision Acoustics – PVdF. <u>https://www.acoustics.co.uk/product/pvdf/</u>

⁴⁴ Tek Tip - Light Management & Diffusing Films Selector Guide. A Guide to All Three Types of Light Management Films - Light Transmission, Light Diffusion, and Light Reflection. <u>https://www.tekra.com/resources/tek-tip-white-paper/tek-tip-light-management-films-selector-guide</u>

⁴⁵ Moisture Barrier Bags. <u>https://www.protectivepackaging.net/moisture-barrier-bags</u>

⁴⁶ PFAS are the next PCBs. <u>https://www.engineeredfluids.com/post/are-pfas-the-next-pcbs</u>

⁴⁷ Dielectric fluids for safer, cooler, greener high performance data centres. <u>https://www.mivolt.com/wp-content/uploads/2021/10/MIVOLT-Data-Centres-Brochure-Mar23.pdf</u> <u>https://www.mivolt.com/</u>

Use category	Function per- formed / sub use for hard disk of servers	Non-PFAS alternati- ves identified	Comments by stakeholders / Addi- tional information
Aerosol / Solvent cleaning of electron- ics components		Products listed on Green- Screen website ⁴⁸	It is unknown if the products on the Green- Screen website are effective.
Lubricant / lubricant oil		Silicone lubricants ^{Fejl! Bog-} mærke er ikke defineret.	Chemical interactions between alternative and product.
Dielectric fluids	Separation of high voltage components	Natural and synthetic esters ^{49 50 51}	
	Immersion coo- ling	• Mivolt ⁵²	No details on chemical structure nor effec- tiveness
Liquid impregnates	Impregnating ca- pacitator	 Mineral oils, vegetable oils, silicone oils, biode- gradable synthetic oils⁵³ 	Not clear if PFASs are actively used in liquid impregnates.

Table 11. Non-PFAS alternatives in the semiconductor sector

Use category	Function perfor- med / sub use	Non-PFAS alternatives identified	Comments by stakeholders / Ad- ditional information
Photo mask (opti- cal pellicles) ⁵⁴	Transparent mem- brane attached to photomask surface to prevent contami- nating particles fall- ing onto the surface of the photomask.	 Hydrocarbon-based greases, molybdenum disulphide, graphite (for photolithogra- phy) ^{Fejl! Bogmærke er ikke defineret. 55} 	
Photoresist	Photoresist matrix, changes solubility when exposed to light	 KrF (248nm) (active ingredient not disclosed)^{56 57} DOWTM photoresist (non-PFOS) composed of solvents, acrylic, other polymer resins, 	

⁴⁸ GreenScreen Certified™ Products > Cleaners & Degreasers in Manufacturing https://www.greenscreenchemicals.org/certified/products/category/cleaners-degreasers-in-manufacturing

⁴⁹ 3M[™] Fluorinert[™] Electronic Liquids. <u>https://www.3m.com/3M/en_US/data-center-us/applications/im-</u> mersion-cooling/fluorinert-electronic-liquids/

⁵⁰ Envirotemp 360 fluid. <u>https://www.cargill.com/bioindustrial/dielectric-fluids/envirotemp</u>

- ⁵¹ The MIDEL Range, <u>https://www.midel.com/midel-range/</u>
- ⁵² Dielectric fluids for safer, cooler, greener high performance data centres. https://www.mivolt.com/

⁵³ Gnonhoue, Olatoundji & Velazquez-Salazar, Amanda & David, Éric & Preda, Ioana. (2021). Review of Technologies and Materials Used in High-Voltage Film Capacitors. Polymers. 13. 766. 10.3390/polym13050766

⁵⁴ <u>US Patent Application for Fluoropolymer-coated photomasks for photolithography Patent Application</u> (Application #20030022073 issued January 30, 2003) - Justia Patents Search

⁵⁵ RIVM (2021): Report Summary Electronics and Energy for the Second Stakeholder Consultation on a Restriction for PFAS

⁵⁶ KrF (248nm) | Fujifilm [United States]. <u>https://www.fujifilm.com/us/en/business/semiconductor-</u> <u>materials/photoresists/krf</u>

⁵⁷ <u>UNEP (2018)</u> Draft report on the assessment of alternatives to perfluorooctane sulfonic acid, its salts and perfluorooctane sulfonyl fluoride (UNEP/POPS/POPRC.14/INF/8)

Use category	Function perfor- med / sub use	Non-PFAS alternatives identified cross-linking agents, stabi- lizers and/or surfactants ^{Feji!} Bogmærke er ikke defineret.	Comments by stakeholders / Ad- ditional information
Photoacid genera- tors (PAG)	As components of a photoresist formula- tion, it should be able to generate strong acids by light irradiation	 Aromatic PAG identified in patents (WO2009091704)⁵⁸ Heteroaromatic PAG identified in patents (WO200909170259, US2011018325960) include the PAG triphenylsulfonium benzo[b]thiophene-2-sulfonic acid, 4(or 7)-nitro-ion(1-) (TPS TBNO) which is currently active and was also identified by Glodde et al.⁶¹ Alternatives unconfirmed in the market⁶² 	Patents filed/fluorine free alternatives have been proposed. However, it is not clear if it is currently offered on the mar- ket.
Antireflection coa- tings	Top antireflective coating for photore- sist. Controls the re- flectivity via the de- structive interfer- ence.	 DOW[™] anti-reflect (non- PFOS), composed of sol- vents, acrylic, other polymer resins, cross-linking agents, stabilizers and/or surfac- tants^{Fejl! Bogmærke er ikke defineret.} 	
Developer	Facilitates the con- trol of the develop- ment process	 Patent US20080299487 for non-fluorinated surfactant, vaguely described⁶³. 	
Surfactants	Uniformity in coating with minimal effect on properties pro- vided by other criti- cal resist/chemical ingredients	 Hydrocarbon-based greases Molybdenum disulphide Graphite^{Fejl!} Bogmærke er ikke defineret. 	The alternatives do not allow the photo- sensitive liquid to be applied evenly on the silicon substrate, making accurate patterning difficult and the quality of the product unattainable. To date, there is no information about the technology to use the presented alternatives as a gen- eral mass production technique.
Etching cleaning	Etch Cleaning of Si- licon Wafers	 Patent EP 3 588 535 A1 de- tails several surfactants in- cluding PFAS and non-fluor 	Use would require strong acids.

⁵⁸ Li, W.; Huang, Wu-Song S. Varanasi, P. R.; Liu, S.; Popova, I. Y. Aromatic Fluorine-Free Photoacid Generators and Photoresist Compositions Containing the Same. WO2009091704, 2009

⁵⁹ Liu, S.; Varanasi, P. R. Fluorine-Free Heteroaromatic Photoacid Generators and Photoresist Compositions Containing the Same. WO2009091702, 2009

⁶⁰ Liu, S.; Varanasi, P. R. Fluorine-Free Fused Ring Heteroaromatic Photoacid Generators and Photoresist Compositions Containing the Same. US20110183259, 2011

⁶¹ Chemsec: Glodde, M.; Liu, S.; Varanasi, P. R. Fluorine-Free Photoacid Generators for 193-nm Lithogra-

phy Based on Non-Sulfonate Organic Superacids. J. Photopolym. Sci. Technol. **2010**, 23, 173–184, DOI: 10.2494/photopolymer.23.173

⁶² Proposed alternatives referenced in literature. Not clear whether it's actively being used: The isomers of nitrobenzenesulfonate (NBS), PAG based on acceptor-substituted thiosulfonate anions: 2-thiophenesul-fonic acid, 5-chloro-4- nitro-, ion(1-) (TN), PAG based on acceptor-substituted aromatic anions: pentacya-nocyclopentiadienide (CN5), methoxycarbonyl-tetracyanocyclopentadienide (CN4-C1)

⁶³Perfluorooctane sulfonic acid, its salts and perfluorooctane sulfonyl fluoride – Stockholm Convention. <u>http://chm.pops.int/Implementation/Alternatives/AlternativestoPOPs/ChemicalslistedinAnnexB/Perfluorooct</u> <u>anesulfonicacidandperfluorooctane/tabid/5869/Default.aspx</u>

Use category	Function perfor- med / sub use	Non-PFAS alternatives identified surfactants which may be al- ternatives ^{3 64}	Comments by stakeholders / Ad- ditional information
Immersion cooling of electronics in data centres - heat transfer fluids		 Mineral oils, synthetic oils, natural oils, Hydrocarbon flu- ids. Patent: WO2012127342 ⁶⁵ 	Materials less suitable because they are less likely to be compatible with adhe- sives, elastomers, and thermal interface materials. Also, hydrocarbons are com- bustible and/or flammable. Hydrocarbon fluids with sufficiently high boiling points and flash points can be used in some single-phase applications, but they have the disadvantage of being relatively vis- cous (especially at low temperature) and do not evaporate readily from hardware when it is removed for service creating maintenance issues.
Plastics such as PC/ABS	Flame retardancy	Brominated and chlorinated flame retardants	

Table 12. Non-PFAS alternatives in the energy sector

Use category	Functioned performed/ sub use	Non-PFAS alternatives iden- tified	Stakeholder comment / Additio- nal information
Solar collector	tective coating	 Polyester (PS), polyamides (PA), polyethylene terephthalate (PET), titanium dioxide nanoparticles^{Fejl!} Bogmærke er ikke defineret. 	Unsure if actively used.
Photovoltaic cells	Coating, film, tape, back sheet, front sheet	 Polyolefin, PET, ethylene vinyl acetate (EVA), titanium dioxide nanoparticles 	Polyolefin, PET, and EVA lack weather resistance and water vapor barrier prop- erties., leading to defects and/or deterio- ration of the cell (decrease in service life).
	Back and front sheet	 Backsheet: PET, Glass, PS, PA, Metallization pastes (MP), Front- sheet: Glass, MP^{Fejl! Bogmærke er ikke} defineret. 	PET: fails over 10 years. PET is flexible and light weight but lacks other proper- ties such as UV resistance. Glass: has UV resist, salt spray resist, fire safety, but is not flexible nor light weight. PS: has UV resist, is flexible and light weight. Lacks information on other prop- erties. PA: fails over 10 years. MP: No data. ^{Fejl!} Bogmærke er ikke defineret.

 $^{^{64}\} https://patentimages.storage.googleap is.com/85/46/dd/6561168dd0eb70/EP3588535A1.pdf$

chel London, Ian T. Cousins, Jamie DeWitt, Gretta Goldenman, Dorte Herzke, Rainer Lohmann, Mark Mil-

ence & Technology 2022 56 (10), 6232-6242 DOI: 10.1021/acs.est.1c03732

⁶⁵ Information Requirements under the Essential-Use Concept: PFAS Case Studies. Juliane Glüge, Ra-

ler, Carla A. Ng, Sharyle Patton, Xenia Trier, Zhanyun Wang, and Martin Scheringer. Environmental Sci-

Use category	Functioned performed/ sub use	Non-PFAS alternatives iden- tified	Stakeholder comment / Additio- nal information
Wind energy	Coating of wind- mill blades	 Polyaspartic ester and titanium di- oxide called Hempablade Edge 171. 	Coating has exceptional rain erosion protection performance and strong UV resistance. ⁶⁶ No data have been identi- fied that compares the efficacy of Hempablade Edge 171 with fluoropoly- mer-based coating for wind turbine blades.
PEM fuel cells	Membrane elec- trode assemblies (MEA); Gas Diffu- sion Layer (GDL), microporous layer, gaskets, sealant.	• Fluorine free elastomers, hydro- carbon elastomers (seals), hydro- carbon membrane, sulphonated polyether ether ketone (PEEK)	Fluorine-free-elastomers: but contamina- tion of the MEA, as well as oxidative de- terioration of the material itself are is- sues. The elastomers could be cheaper but are not as chemically stable. They are superior with regards to gas-perme- ability and cost. Hydrocarbon elastomers: Lack of heat resistance, chemical resistance, water vapor barrier and flame-retardant prop- erties. Failure of the seal material to maintain a tight seal due to deterioration (leakage of solution from inside the com- ponent or, conversely, penetration of liq- uid from outside the component).
			Lack of durability against load fluctua- tions during power generation. There is also the possibility of short-circuiting and ignition, which does not guarantee safety.
Membrane		 Hydrocarbon multi-block copolymer electrolyte membranes [multiblock copolymer poly(sulphonate phenylene)-b-poly(arylene ether ketone)] - under development⁶⁷ Hydrocarbon membrane, sulphonated polyetheretherketone (PEEK), polysulfone (Under development, performance may be comparable, durability is very questionable). 	Alternatives not suitable in the harsh environment of a fuel cell. ⁶⁸ Usually, properties and performance of hydrocarbon membrane and sulphonated polyether ether ketone (PEEK) membrane can be reasonably good whereas the durability is often poor, as oxidation by oxygen radicals, which are inevitably generated at the cathode electrode, occurs.

⁶⁶ Hempel launches its first leading edge protection coating for wind blades. <u>hempel-launches-its-first-lead-ing-edge-protection-coating-for-wind-blades - Hempel</u>

⁶⁸ PFAS in Automotive Technologies of the Future. <u>https://www.vda.de/vda/de/aktuelles/publikationen/pub-</u> <u>lication/pfas-in-automotive-technologies-of-the-future</u>

⁶⁷ Y. Zhao, M. Yoshida, T. Oshima , S. Koizumi , M. Rikukawa , N. Szekely , A. Radulescu and D. Richter , Elucidation of the morphology of the hydrocarbon multi-block copolymer electrolyte membranes for proton exchange fuel cells, Polymer, 2016, 86 , 157—167, in https://pubs.rsc.org/en/content/articlelanding/2019/EM/C9EM00163H

Use category	Functioned performed/ sub use	Non-PFAS alternatives iden- tified	Stakeholder comment / Additio- nal information
PEM electro- lyser, PEM fuel cells	Gaskets, sealants	 Hydrocarbon membrane, sulphonated polyetheretherketone (PEEK), polysulfone (Under development, performance may be comparable, durability is very questionable). Ionomers/sulfonated polymers (Lower ionic conductivity, unstable vs. chemical degradation) Reinforcement material alterna- tives: electrospun polybenzimid- azole-type materials Hydrocarbon elastomers (seals) 	Electrospun polybenzimidazole-type ma- terials: commercial use is expected to begin not before five to ten years, also motivated by superior mechanical prop- erties compared to those of PTFE. Hydrocarbon elastomers lack heat re- sistance, chemical resistance, water va- pour barrier and flame-retardant proper- ties. Failure of the seal material to main- tain a tight seal due to deterioration (leakage of solution from inside the com- ponent or, conversely, penetration of liq- uid from outside the component). Chem- ical stability, creep resistance, sliding properties, cryogenic properties. It is not clear in which application the "reinforce- ment" is intended to be used, but if it is intended to be used as a core material in fuel cells. The proposed alternative can- not guarantee the stability, safety and long-term use of the reinforced object.
Li-ion batteries	Electrode binders, separator, films/coatings, electrolyte addi- tives, thermal management pack/module	 Hydrocarbon elastomers (seals). Solid state batteries. Lead-acid batteries 	Hydrocarbon elastomers lack heat re- sistance, chemical resistance, water va- pour barrier and flame-retardant proper- ties. Failure of the seal material to main- tain a tight seal due to deterioration (leakage of solution from inside the com- ponent or, conversely, penetration of liq- uid from outside the component). Other types of batteries: reduced energy efficiency, unrealistic that this option would cover expected growth of electric vehicles
Batteries	Binder for anode	• Carboxymethyl cellulose lithium, gelatin (Li-CMC), sodium algi- nate, xanthan gum, chitosan and derivate, agar-agar, carrageenan, guar gam, and many other poly- mers as PAA, PMA, PVA, AMAC, AMMA, polyimide, carboxymethyl	Possibly better performing and more en- vironmentally friendly alternatives, but largely at research stage.

Use category	Functioned performed/ sub use	Non-PFAS alternatives iden- tified	Stakeholder comment / Additio- nal information
		cellulose (CMC), and styrene-bu- tadiene rubber (SBR) ^{69 70} (Re- search phase)	
Flow batteries	lonomer mem- branes, ion ex- change mem- branes	Solid-state batteries (research phase)	Research phase
Other	Switch gears, high voltage DC con- verter valves	• Sulfur hexafluoride (SF6)	High global warming potential.

⁶⁹ Versaci, D., Nasi, R., Zubair, U. et al. New eco-friendly low-cost binders for Li-ion anodes. J Solid State Electrochem 21, 3429–3435 (2017). <u>https://doi.org/10.1007/s10008-017-3665-5</u>

⁷⁰ Bresser, D., Buchholz, D., Moretti, A., Varzi, A., & Passerini, S. (2018). Alternative binders for sustainable electrochemical energy storage–the transition to aqueous electrode processing and bio-derived polymers. Energy & Environmental Science, 11(11), 3096-3127. <u>https://doi.org/10.1039/C8EE00640G</u>

PFASs and PFAS free alternatives in the Electronics and Energy sector

Preceding the Universal PFAS restriction proposal (Annex XV report), the use of PFASs in the electronics and energy sectors was assessed and PFAS-free alternatives were identified. Additionally, data on emissions, economics and social impacts in these sectors, were evaluated and summarized.

This report contains publicly available information and information received from stakeholders.

The content may be different from the information provided in the Annex XV dossier.

The Danish Environmental Protection Agency Tolderlundsvej 5 DK - 5000 Odense C

www.mst.dk