Environmental Project NO. 636 2001
Miljgprojekt

Report on the Advisory list for
selfclassification of dangerous
substances

Miljgstyrelsen

Milje-og Energiministeri



The Danish Environmental Protection Agency will, when opportunity
offers, publish reports and contributions relating to environmental
research and development projects financed via the Danish EPA.

Please note that publication does not signify that the contents of the
reports necessarily reflect the views of the Danish EPA.

The reports are, however, published because the Danish EPA finds that
the studies represent a valuable contribution to the debate on
environmental policy in Denmark.



Contents

SUMMARY 5

1  BACKGROUND, CONTENTS, AND USE OF THE LIST 7
1.1  BACKGROUND
1.2 QSAR MODELS - AN ALTERNATIVE METHOD FOR ASSESSMENT OF
DANGER 8
1.3 THE ADVISORY LIST FOR SELFCLASSIFICATION OF DANGEROUS
SUBSTANCES 9
1.4  THEDUTY OF MANUFACTURERS AND IMPORTERS TO CARRY OUT
SELFCLASSIFICATION 11

2 TECHNICAL DESCRIPTION OF THE CREATION OF THE LIST
AND THE QSAR MODELS USED

2.1

INTRODUCTION

2.1.1 SAR | OSAR

2.1.2 The domain of the models

2.1.3 Accuracy of the model predictions
2.1.4 Software

2.2

METHODOLOGY IN MAKING THE LIST

2.2.1 The selected dangerous properties
2.2.2 The evaluated chemical substances
2.2.3 Test data

2.2.4 Use of OSAR models

2.2.5 The result

2.3
2.4
2.5
2.6
2.7

ACUTE ORAL TOXICITY

SENSITIZATION BY SKIN CONTACT
MUTAGENICITY

CARCINOGENICITY

DANGER TO THE AQUATIC ENVIRONMENT

3 REFERENCES

13

13
13
14
14
15
17
17
17
17
18
18
19
21
24
27
31

35






Summary

This report features a description of the Danish Environmental Protection
Agency's (EPA) Advisory list for selfclassification of dangerous substances.
The substances have been identified by means of computer models, so-called
QSAR models (Quantitative Structure-Activity Relationship). The list is
intended as an aid to producers / importers in their selfclassification.

Part I of this report features a description of the background of the list, its
contents, and its application. Part II comprises a technical description of the
QSAR models used, the creation of the list, and its relationship to the criteria
for classification of selected dangerous properties. The list can be found on
the Danish EPA's homepage ( www.mst.dk ) under the heading "chemicals".

With the aid of QSAR models, the Danish EPA has examined approximately
47,000 chemical substances, identifying 20,624 substances which are deemed
to require classification for one or more of the following dangerous properties:
Acute oral toxicity, sensitization by skin contact, mutagenicity,
carcinogenicity, and danger to the aquatic environment.

According to classification criteria, classification should be carried out on the
basis of the knowledge available, which is most often from the results of
laboratory tests on animals. However, in the experience of the Danish EPA,
manufacturers / importers find it difficult to comply with their duty to assess
whether a substance they wish to introduce to the market should be classified
because of lack of available data. The fact is that only very little information is
available on the dangerous properties of chemical substances. The Danish
EPA estimates that for approximately 90 per cent of all substances, only few
or no test results from animal testing etc. are available on any dangerous
properties to humans or the environment.

In addition to results from animal testing, the criteria for classification also
provide opportunities for using alternative methods. This could for instance
be studies which do not require the use of laboratory animals, but are based
on comparisons with other similar chemicals by so-called structure-activity
relationships.

QSAR modelling is such an alternative method to assess the potential danger
of chemical substances. For several years now, the Danish EPA has carried
out work to develop and apply QSAR models in order to predict the
properties of chemical substances. The models used here are now so reliable
that they are able to predict whether a given substance has one or more of the
properties selected with an accuracy of approximately 70-85 per cent.

In spite of the general lack of data, reliable information on the dangerous
properties of substances from suitable animal testing, etc. might be available
for some substances found in the Advisory list for selfclassification of
dangerous substances. To the extent that this is the case, such information
should be employed for selfclassification in preference to the
recommendations of this list.



It should be emphasized that the list is not binding. The responsibility for
carrying out correct classification still rests with the manufacturer / importer.
The Danish EPA calls upon importers/manufacturers to use the Advisory list
for selfclassification of dangerous substances as a tool in their assessment of
the dangerous properties of chemicals in cases of insufficient or no data for
the selected dangerous properties.



1 Background, contents, and use of
the list

1.1 BACKGROUND

When chemical substances are to be classified in terms of the danger they
represent, their inherent properties are assessed on the basis of the knowledge
and information available /1,57/. Such assessment is often carried out on the
basis of results from animal testing. Assessment must be carried out
individually for each property, which means that extensive animal testing may
be required for a single substance. Thus, complete identification of all the
properties that are classified at present can entail up to 30 animal studies on
animals for just one substance.

Studies have shown that very little information is available on the danger
posed to human beings and the environment by chemical substances in the
European market. In 1999, the European Commission assessed the scope of
available test data for substances which are available on the market in large
quantities (more than 1,000 tonnes per manufacturer/importer per year in the
EU). The Commission found that the minimum information on dangerous
properties of substances required under EU regulations in order to carry out
risk assessment of industrial chemicals was only available for 14 per cent of all
the substances studied. For 21 per cent of all substances, no test data at all
was available as regards their toxicity towards human beings or the
environment /2/.

In 2000, the Danish EPA carried out a study to determine the extent of the
data available on the danger, presented by the approximately 100,000
substances in the EU Inventory of Existing Substances /3/, in two of the
world's largest sources of publicly available test data (RTECS, 2000;
AQUIRE, 1994, This study showed that test data on selected types of
effects were available for the following percentages of all Einecs substances
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TABLE
Acute toxicity 13.4 per cent
Toxic to reproduction 2.5 per cent
Mutagenicity 3.9 per cent
Carcinogenicity 1.8 per cent
Danger to the aquatic environment 3.5 per cent

" Einecs: European Inventory of Existing Chemical Substances: Inventory of
substances which were reported by industry as being present within the European
market during the period 1971 to 1981.

" RTECS: Registry of Toxic Effects of Chemical Substances, The National Institute
of Occupational Safety and Health, Washington, D.C.

™ AQUIRE: AQUiatic toxicity Information Retrieval, United States Environmental
Protection Agency, Mid-Continent Ecology Division, Duluth, MN.



Thus, in the assessment of the Danish EPA, information on the dangerous
properties of chemical substances is at present incomplete or absent for
approximately 90 per cent of all substances listed in the Einecs. This means
that many chemical substances within the European market can have
unknown dangerous properties even though they have been used for many
years. Issues regarding animal ethics and financial considerations mean that it
is unlikely that test data on the dangerous properties of these substances will
be available within the foreseeable future.

The criteria on classification describe how available experimental test data
(from animal testing, etc.) should be used in assessment and classification of
the toxicity of substances for human beings and the environment. These
criteria also describe how the danger presented by substances can be assessed
by means of comparison to other, similar substances with known toxic
properties (SARs, Structure-Activity Relationships). Finally, these criteria
include the use of expert judgements, e.g. from practical experience of a given
substance, as the basis for classification /1,57/.

In Denmark as well as internationally in the EU and the OECD the
importance of developing alternative methods, which are not based on animal
testing, are emphasized. Lower organisms such as algae and bacteria are
already being used in tests for certain properties, and today good results have
been achieved by means of alternative tests rather than tests on animals. A test
method for skin irritation, which does not require the use of living animals,
was recently added to the rules on classification /1,57/. As regards many
dangerous properties, however, efforts made to discover suitable methods for
testing which do not require use of laboratory animals have untill now not
succeeded.

1.2 QSAR MODELS - AN ALTERNATIVE METHOD FOR ASSESSMENT OF DANGER

Quantitative structure-activity relationships (QSAR models) can be used for
assessment of dangerous properties as an alternative to animal testing. A
QSAR model relates an effect with molecular descriptors found to be tied to
this effect. Using information on the relevant molecular descriptors the
models can predict effect for substances without test data. By using the ability
of computers to go through large quantities of information, QSAR models
have in this project been used to assess a big number of substances.

The principle behind structure-activity relationships is that substances with
comparable structures possess similar properties. SARs and QSARs are well-
known tools for assessment of chemical substances. These tools are used by
authorities in the USA and the EU, as well as by industry, to assess physico-
chemical, toxicological, and eco-toxicological properties and to predict the
fate of substances in the environment.

The criteria for EU classification include the possibility of using expert
judgements as well as conclusions based on structural analogies /1,57/. SARs
and QSARs have been used for classification of effects on the aquatic
environment in cases where no test data on toxicity or degradation in the
aquatic environment were available. As regards classification for impacts on
human health, SARs have been applied in specific cases, and this tool was
recently used in a discussion of two special properties: Narcotic effect and



defatting properties.

1.3 THE ADVISORY LIST FOR SELFCLASSIFICATION OF DANGEROUS SUBSTANCES

The Danish EPA has carried out work on QSAR models for several years, an
area that continues to develop. At present, the Danish EPA has access to
reliable models which are capable of predicting whether a substance possesses
one or more of the dangerous properties selected in this context. The
substances on this list have been assessed for the following dangerous
properties: Acute oral toxicity, sensitization by skin contact, mutagenicity,
carcinogenicity, and danger to the aquatic environment. According to
validation results the models available to the Danish EPA identify the
substances which possess these properties with a degree of accuracy of
approximately 70 - 85 per cent, depending on the model used.

The basis for the list was the European Inventory of Existing Substances,
Einecs. For technical reasons, the QSAR models can only assess chemical
substances with unambiguous chemical structure, so-called discrete
substances. The Danish EPA has used validated QSAR models to carry out a
systematic assessment of the approximately 47,000 discrete organic
substances in Einecs. Also, the approximately 7,000 chemical substances
which have already been classified by EU authorities, have not been included
in the assessment .

The criteria for computer-model selection of substances for a given property
have been defined to match the criteria for classification of chemical
substances as closely as possible. /1/. For properties, where the criteria are
open to interpretation, such definitions have been specified in accordance
with the Danish EPA’s best judgement with a view to providing the public
with an operative list. The preparation of this list is described in more detail in
Part I1.

The result of the computer-based assessment is this Advisory list for
selfclassification of dangerous substances, which comprises 20,624 chemical
substances with suggested classifications for one or more of the dangerous
properties selected.

By making this Advisory list for selfclassification of dangerous substances
available to the public, the Danish EPA wishes to offer manufacturers /
importers a tool which can be used when carrying out selfclassification of
chemical substances for those dangerous properties which are included in the
list. Enterprises are encouraged to include the advisory classifications
provided in this list in their assessment of chemical substances where no

UThese substances can be found in the List of dangerous substances /5/. As far as
possible, such substances have been removed from consideration prior to the
assessment of the substances for the Advisory list for selfclassification of dangerous
substances. However, substances may appear in both lists. This is due to the fact that
no official overview of the substances covered by the group entries in the List of
dangerous substances is available. Another reason is that a single chemical may be
found under the heading of several CAS numbers. Where substances listed in the
Advisory list for selfclassification of dangerous substances also appear in the List of
dangerous substances, the recommended classification provided in this list must be
discounted in favour of classification as indicated in the List of dangerous substances.
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results from animal testing or other reliable data on the relevant dangerous
properties are available.

The selected dangerous properties and classifications are listed in Table 2.

TABLE 2

Dangerous property

Classification

Wording of classification

Acute oral toxicity Xn;R22 Harmful; harmful if swallowed
Sensitization by skin contact R43 May cause sensitization by skin contact
Mutagenicity Mut3;R40 Mutagen, category 3; possible risk of
irreversible effects
Carcinogenicity Carc3;R40 Carcinogen, categori 3; possible risk of
irreversible effects
Danger to the aquatic N;Rs50 Dangerous for the environment; very toxic to
environment aquatic organisms
N;Rs50/53 Dangerous for the environment; very toxic to
aquatic organisms, may cause long-terms
adverse effects in the aquatic environment
N;R51/53 Dangerous for the environment; toxic to
aquatic organisms, may cause long-terms
adverse effects in the aquatic environment
R52/53 Harmful to aquatic organisms, may cause

long-terms adverse effects in the aquatic
environment

For each substance on the list, the following information is included in
addition to the advisory classifications: Einecs name in Danish and English,
Einecs number, and CAS number.

Figure 1 shows how many of the 20,624 substances in this list have been
included with advisory classifications for each dangerous property.

FIGURE 1:
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It should be noted that the Advisory list for selfclassification of dangerous
substances is not an exhaustive list of all the dangerous substances in the EU
Inventory of Existing Substances (Einecs). As was mentioned above, the
substances assessed here comprise only approximately half of all substances in
Einecs.

At the same time, the list cover only those selected dangerous properties
which feature the most reliable computer-generated predictions. Therefore
these substances may well possess other dangerous properties.

Finally, for each of the selected dangerous properties, only the substances for
which the model predictions are most reliable, have been included in the list.
As a result, substances that were assessed but not included in this list may well
possess one or more of the dangerous properties selected.

Similarly, if a substance is included in this list and does not have an advisory
classification for e.g. carcinogenicity, the substance can nevertheless have this
property. The reason for this could be that the models for carcinogenicity
applied do not have good coverage for this specific chemical substance.

If a substance is not included in the list, or it is on the list but without one or
more advisory classifications, this can then be due to the models predicting
that the substance does not possess these dangerous properties, or it can be
because the models are not able to give a good prediction in these cases.

Finally, out of the substances that a model cover, it can sometimes
erroneously estimate substances as not having a property which they in fact
do have (false negatives). With other substances, the models will attribute a
specific property to a substance, which actually does not possess that property
(false positive). The Advisory list for selfclassification of dangerous
substances can be used to identify substances that do possess dangerous
properties, well knowing that that some predictions will be false positives. If
the list had contained negative predictions, a part of these would also be
incorrect (false negatives). By this, substances which in reality possess
dangerous properties would be advised not to be classified for this.

This list, only containing positive predictions, can not be used to “acquit”
substances of dangerous properties.

1.4 THE DUTY OF MANUFACTURERS AND IMPORTERS TO CARRY OUT
SELFCLASSIFICATION

Manufacturers or importers are responsible for investigating the properties of
chemical substances and for classifying them in accordance with their inherent
dangerous properties before marketing them. Such selfclassification must be
carried out on the basis of available information on substances in accordance
with the criteria of the Statutory Order on Classification /1,57/.

As regards the approximately 7,000 substances for which harmonised
classification has been adopted, the classification of the List of dangerous
substances shall be applied /5/. For the remaining approximately 93,000 of the
100,000 substances in the EU Inventory of Existing Substances /2/,
importers/manufacturers are obliged to assess whether such a substance
should be classified as dangerous (selfclassification). Selfclassification must be
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carried out in accordance with the criteria in Appendix 1 of the Statutory
Order on Classification.

The Advisory list for selfclassification of dangerous substances is intended as
a tool to help manufacturers / importers fulfil their duty to carry out correct
classification in those cases where no other information is available on a given
substance. When preparing this list, the Danish EPA has not examined
whether data on individual substances is available in literature. The duty to
map available information on substances for selfclassified lies with
manufacturers / importers. Reliable test results or relevant specialist
knowledge on specific substances should always be used in preference to
computer predictions. This is to say that where such information - which runs
contrary to the recommendations of this list - is available, it should be used
instead of the classifications featured in this advisory list. At the same time, it
should be emphasised that this advisory list includes only some of the
dangerous properties which must be considered by manufacturers / importers
in their assessment of substances. Manufacturers / importers should also carry
out assessment of other properties regarding flammability, explosivity, and
danger to human health and the environment.

Use of the list
It is recommended that the list be used for selfclassification in the following
way:

1. Examine if the substance is on the List of dangerous substances /5/. If so it
should be classified accordingly.

2. If the substance is not on the List of dangerous substances, it should be
classified according to the criteria in the Statutory Order on Classification
/1.

3. In cases of an otherwise unsufficient data basis for selfclassification, it is
recommended to use the Advisory list for selfclassification of dangerous
substances.



2 Technical description of the
creation of the list and the QSAR
models used

2.1 INTRODUCTION

In a field developing as rapidly as QSAR’s are today, there will always be
better models, better validations and new endpoints becoming available - and
consequently never a “right” time to release advisory classification based on
them. It is however, felt that considerable information has been accumulated
which can now be of help in the otherwise difficult task of assessing the
toxicology of many thousands of otherwise untested chemicals. This
knowledge may also be of assistance in helping to direct future testing plans to
the areas for which it is most urgently needed.

2.11 SAR/ QSAR

The concept that similar structures will have similar properties is not new.
Already in the 1890’s it was discovered, for example, that the anaesthetic
potency of substances to aquatic organisms was related to their oil/water
solubility ratios, a relationship which led to the use of LogP? (octanol/water) as
a prediction of this effect. T'oday it is known that all chemicals will exhibit a
minimum or “basal” narcotic effect, which is related to their absorption to cell
membranes, and which is well predicted by their lipophilic profile.

SARs and QSARs ((Quantitative) Structure Activity Relationships) are based
on a comparison of the structure and physico-chemical properties
(descriptors) with measured parameters or endpoints for a range of chemicals
called a training set.

The endpoint may for instance be another physical-chemical property or it
may be a biological effect. The descriptors may include LogP?, molecular
indices, quantum mechanical properties, shape, size, charge, distributions, etc.
The comparison is often made with statistical tools. The goal is to determine
which descriptor(s) are in an essential way connected with the endpoint in
question, and to set up a relationship between these descriptors and the
endpoint.

When the result is expressed qualitatively the relationship is a SAR, and when
the result is expressed quantitatively the relationship is a QSAR. A QSAR is a
relation between the quantitative descriptors for chemical substances and a
more or less graduated scale of property or effect.

Once a correlation between structure / properties is established it can be used
for predictions of the endpoints for other chemicals, for which the descriptors
are known or can be estimated. In general, development and use of the
correlations are done by computers.

13
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2.1.2 The domain of the models

The domain limits the QSARs use to the endpoint being modelled and the
group of substances for which it is valid. The domain of the QSAR is defined
in the selection of the training set; the coverage of the descriptors of the
training set define the “area” of “the chemical universe” for which the model
is valid.

2.1.3 Accuracy of the model predictions

In order to check a models predictive ability it should be validated. Validation
is a trial of the model performance for a set of substances independent of the
training set, but within the domain of the model. The model predictions for
these substances are compared with measured endpoints for the substances in
order to establish the accuracy of the models.

Ideally all models should be assessed by seeing how well they predict the
activity of chemicals, which were not used to make them. This is not,
however, always simple. In part valuable information may be left out by
setting aside chemicals to be used in such an evaluation, and in part it can be
extremely difficult to assess how “external” chemicals relate to the model’s
domain; that is, if they represent a random distribution within this thereby
giving a fair picture of the performance of the model.

This problem is often addressed by using one or another form of cross-
validation. Statistical evaluation is an extremely important method of
determining the performance of these models, and in some cases (where there
is little or no test data to be found which was not used to develop the model) it
is the only method available.

The validation techniques most commonly mentioned in this report include
the “drop one” “Q”” procedure, where one substance at a time is removed,
and then predicted by a model made on the remainder of the training set.
This is done once for every substance. While widely used, this form of cross-
validation can have a tendency to over-predict goodness of fit.

A more robust technique for these data sets is for example the “3x10% out”,
which consists of removing a random sample of 10% three times, and each
time making a new model which is then used to predict the excluded
chemicals. Instead of running this process three times it can be run until all of
the chemicals have been estimated. However, three runs will generally be
sufficient to establish the correlation /50/.

For the validation of a parametric model the result can be expressed as the
sensitivity, the specificity and the concordance of the model. The sensitivity is
a measure of how well the model “catches” the substances with the effect
being modeled. A sensitivity of 80% means that 80% of the “true positives” in
the validation set were correctly predicted as positives, and that the remaining
20% were falsely predicted as negatives (false negatives). The specificity is a
measure of how many false positives the model predicts. A specificity of 80%
means that 80% of the ”true negatives” in the validation set were correctly
predicted as negatives, and the remaining 20% of the negatives were falsely
predicted as positives (false positives). The concordance is an overall measure
of the correctness of the predictions. A concordance of 80% means that 80%
of the substances in the validation set were correctly predicted as positives or



negatives, and the remaining 20% are the false predictions (false negatives and
false positives).

Predictive ability will vary depending on both the method used, and the
endpoint in question. In general, predictive ability of contemporary QSAR
systems can often correctly predict the activity of about 70 — 85% of the
chemicals examined, provided that the query structures are within the
domains of the models /53,54/. This also applies to the models described in
this paper. Of course, a model can never be more accurate then the test data
on which it was based. Therefore it is extremely important to be aware of the
accuracy and reproducibility of the test data used for making a model. If a
biological test gives the wrong results 17% of the time, the “perfect” model
based on these tests would also be wrong in 17% of the time.

In addition to assessing the predictive ability of a model, it is also necessary to
consider in which context it will be used. In some cases a large number of
“false positives” or “false negatives” may be acceptable, while in others they
will not be. In this exercise there was no deliberate attempt to adjust the
weight of these factors in either direction. The specific “context “ in which
these models have been used is simply that where there are no tests or other
information available, the alternative is that the substance is not assessed at all
for the endpoints covered.

2.1.4 Software

Today numerous computerized systems exist for predicting a large range of
effects reaching from biodegradability to cancer. These include fragment
based” statistical systems such as TOPKAT and M-CASE, as well as three-
dimensional Modelling of ligand docking™ such as Comparative Molecular
Field Analysis (COMFA). Mention should also be made of OASIS /46,47/, a
sophisticated program package able to estimate a wide variety of effects using
3-D and Quantum Mechanical parameters, and which is currently being used
to estimate binding of chemicals to Estrogen receptors /48/.

In essence, these programs don’t really do anything “new.” They are simply
grouping substances with similar structures and similar effects, including use
of global or local parameters such as LogP and electrophilicity in much the
same way as an expert might do. However, they do this at very high speed and
take account of a large number of factors simultaneously (such as critical
inter-atomic distances) which can assist an expert in finding hitherto
unobserved relationships. In addition, the programs TOPKAT and M-CASE
described below, emulate another human characteristic, and reject estimates
for chemicals where there is simply not enough information to provide a
sound prediction. They accomplish this by iterative statistical methods rather
than by human intelligence or intuition.

M-CASE

M-CASE is a knowledge-based artificial intelligence system capable of
learning directly from data. Models made in this program can predicts various
toxic endpoints on the basis of discrete structural fragments found to be

" In fragment based programs the prediction is based on the occurence of molecular
substructures.

" Ligand docking models give predictions of how well a chemical substance fitsin a
certain 3D structure of a macromolecyle with abiological function like areceptor (for
example a hormone receptor).

15
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statistically relevant to a specific biological activity, either increasing or
decreasing it. The program can thus provide a “chemical” explanation to
observed biological properties. It assumes that the presence of fragments
previously found in a number of active compounds is indicative of potential
activity. This fragment-based method is assumed to be a reasonable basis to
assess the activity of new molecules. On the basis of the presence of the
fragments in a query molecule the program will estimate a value for its
potency by using “local QSARSs” for the various fragments. If so found,
“global QSARSs” like the relation between LogP and toxicity to aquatic
organisms may also be included in the model. The program gives a warning if
there are fragments in the query molecule, that are not found in the training
set of the model, indicating that the query molecule is outside the domain of
the model /38,43/. Estimates for substances found to be within the domain of
the model and for which sound predictions could be made are referred to as
AOKs (“All OK chemicals™) in this paper.

TOPKAT

TOPKAT assesses toxicity of chemicals from their molecular structure
utilizing QSTR (Quantitative Structure Toxicity Relationship) models for
assessing specific adverse health effects /56/. When querying the program by
entering a code for chemical structure, the program determines the compound
class of the structure for those models which have class-specific sub-models.
Next, the system computes the descriptors needed for the specific toxicity
model. These consist of for example electrotopological state, kappa indices,
molecular weight and symmetry indices. Then the program checks whether all
the fragments present in the query molecule were present with adequate
frequency in the training set for the specific equation. If there are no missing
fragments, the program next checks whether the query is within the optimum
prediction space of the equation. If this is the case, the training set of the
model is searched for the compounds most similar to the query molecule, and
the concordance between the actual and predicted values for those
compounds is determined /45/. If there is reasonable agreement between
oberserved / predicted values for the four most similar substances the estimate
is accepted and referred to as AOKs in this paper.

Epiwin

This suite of programs developed by Syracuse Research Corporation was
used to estimate three ecotoxicological parameters — Biodegradation, LogP
and Bioconcentration. Unlike TOPKAT and M-CASE, Epiwin does not
attempt to define a predictive space, and all estimates were used “as is”.

Chem-X

This program has features for making estimates for a large number of
physical-chemical properties of chemicals, making 2D- and 3D-QSARs and
storing large amounts of data and chemical structures in databases.

The Danish EPA has built up a database in Chem-X which contains QSAR
predictions for about 166.000 substances /55/, including almost all of the
discrete organic chemicals in Einecs, a total of approximately 47,000
substances. Estimates are available for a number of endpoints covering both
health- and environmental concerns. The QSAR estimates for these chemicals
create the background for the recommended selfclassifications. Detailed
facilities for searching, displaying and manipulating chemical structures are
also available in this data package. This tool was used extensively to compare



test data, predictions and selected sub-substructures while performing
“expert” assessment of the QSAR’s.

Possibilities for dissemination of this database and the detailed QSAR
predictions are currently unclear due to issues of copyright.

2.2 METHODOLOGY IN MAKING THE LIST
2.2, The selected dangerous properties

The following endpoints were addressed:

¢ Acute oral toxicity

¢ Sensitization by skin contact

e Mutagenicity

e Carcinogenicity

¢ Danger to the aquatic environment

2.2.2 The evaluated chemical substances

The overall purpose of the project was to evaluate as many as possible of the
substances in FEinecs (European Inventory of Existing Commercial Chemical
Substances) /2/. The list consists of 100.116 entries, covering organic and
inorganic substances in both single substance entries and mixtures.

The screening was limited to cover “discrete organics,” meaning that UVCBs
(Unknown, Variable Composition and Biologicals) and other ill-defined
structures or mixtures were excluded for practical reasons — if you don’t know
what it is, you can’t really make a model. Exceptions were made where this
seemed logical (C12 — C16 n-alcohols has been entered as C14 n-alcohol —
hydrochloride salts have been entered as the parent compound, etc.).

Inorganic substances have likewise not been evaluated. These are usually
better approached by simpler methods of evaluating the availability of the
respective an- and cations with well known hazard profiles. "Organo-
metallics” have also been excluded as being poor candidates for modeling.
Finally, as a matter of resources, only such chemicals as were available with 3-
D structural information were used /7/.

In so far as this was possible using a CAS number comparison, all substances
already classified on Annex I of the formal EU list (List of dangerous
substances) were also removed as they should never be the subject of
provisional classification.

This resulted in a total of 46,707 or about half of all Einecs chemicals, which
could be subjected to screening.

2.2.3 Test data
For the vast majority of the chemicals no measured data was available.

However, if measured data were available as part of the model, this was
generally used in preference to the estimates.

17
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It is important to stress that no attempt was made to search the world’s
published or unpublished databases for toxicological information to determine
whether a QSAR was even necessary for each endpoint. This task is the
responsibility of the manufacturer / importer of the individual chemicals.

2.2.4 Use of QSAR models

The technical specifications for the models and a description of the criteria for
assignment of advisory classifications for each effect are given in the technical
sections for the individual endpoints.

It should also be stressed that the models available do not predict a
“classification” — they predict biological activity that may lead to a
classification. Further criteria have therefore been applied to each endpoint to
try and link the biological prediction with a risk phrase. Because of the large
number of chemicals involved, “rules” were used to achieve this purpose.
Such rules are also imperfect, but in essence the process is no different than
that imposed upon a human expert forced to use common sense to provide a
provisional classification for any given substance for which the desired test
data does not exist.

Only model predictions that satisfied a formal criteria were used:

For TOPKAT the predictions had to fall within the optimum prediction
space of the model, and the four most statistically relevant observed/predicted
chemicals referenced by the model should be within acceptable agreement.
The predictions fulfilling these criteria are referred to as AOKs.

For M-CASE the predictions had to fall within the optimum prediction space
of the model, meaning that there were no unknown fragments, and that there
was sufficient knowledge about the known fragments to give an unequivocal
prediction.

As described in the technical sections, expert inspection has been undertaken
where time allowed to confirm the probable activities given by the QSARs.
This has included evaluation of the QSAR estimates in comparison with
known biological activities and chemical properties. No in depth toxicological
assessment of the individual chemical substances has been undertaken.
Questionable QSAR predictions for each endpoint were excluded.

The effort used on expert inspection varied with the endpoint in question. In
general most time was used in assessing the predictions for Mutagenicity and
Carcinogenicity, and least was used on Allergy and Aquatic Effects.

2.2.5 The result

It is important to understand that the results as given in the Advisory list only
represent POSITIVE predictions. No distinction has been made between a
negative prediction for an endpoint, and an unreliable prediction (a non-AOK
prediction) which was simply discarded.

Evaluated substances not on the list, or substances which are on the list but
without advisory classifications for one or more of the selected dangerous
properties, may have been predicted as not having this / these dangerous
properties, or the models may not have been valid for this substance.



Therefor the advisory list can not be used to conclude that these substances
do not posess dangerous properties. Depending on the endpoint in question,
unreliable predictions were obtained for between 5 and 65% of the chemicals
examined.

2.3 ACUTE ORAL TOXICITY

EU criteria for classification

The formalized criteria for classification for acute oral toxicity includes a
number of options of tests including fixed-dose procedure and interpretation
of the various sources of information about acute oral toxicity, but is often
based on acute LD tests in the rat for which the following classification
criteria are used:

TABLE 3 CLASSIFICATION CRITERIA

Classification criteria Classification

LD,, oral, rat < 25 mg/kg T+;R28 (very toxic; very toxic if swallowed)
25 mg/kg < LD, oral, rat < 200 mg/kg T;R25 (toxic; toxic if swallowed)

200 mg/kg < LD, oral, rat £ 2,000 mg/kg Xn;R22 (harmful; harmful if swallowed)

Evaluation based on OSAR models

An advisory classification of Xn;R22 is recommended in all cases where a rat
oral LD, of <2000 mg/kg is predicted or based on measured data. For
reasons indicated below, no attempt was made to differentiate between the
different levels of acute toxicity, and it is important to recognize that this
classification will often be less stringent than classification based on measured
data.

If test results measured in the rat were readily available (had been used to
make the model) these took precedence over any predictions.

As acute toxicity data from the mouse following a variety of different routes of
administration was also available in some cases, this was used to predict rat
oral LD, ’s using the QSARSs preferentially as follows /8,9/:

TABLE 4

Log LD, oral, rat = 0.731 + 0.841 * (Log LD, oral, mouse)

RTECS data 1989, n=3919, R*=0.750, Q> = 0.749

2. LogLD,, oral, mouse =0.682 + 0.373 * (Log LD,, iv, mouse) + 0.518 * (Log LD, ip, mouse)

RTECS data 1994, n = 286, R*> = 0.766, Q> = 0.764

Log LD,, oral, mouse = 0.731 * (Log LD,, iv, mouse)

RTECS data 1994, n=286, R* = 0.724, Q> = 0.724

4. LogLD,, oral, mouse = 0.945 + 0.802 * (Log LD, iv, mouse)

RTECS data 1994, n=286, R* = 0.689, Q> = 0.688

iv: Intravenous
ip: Intraperitonial
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Biological data consisting of LD, ’s in mice or rats was available for just over
10% of the chemicals processed. If no biological data were available, rat oral
LD, was estimated according to the QSTR model TOPKAT (v 5.01).
According to TOPKAT, the model contains about 4,000 substances and their
own cross-validation for this endpoint indicates 86-100% of estimations falling
within a factor of five from test results /10/.

Danish EPA’s external evaluation of this model using 1,840 chemicals not
contained in the TOPKAT data set gave somewhat poorer results; R> = 0.31.
According to this evaluation 86% of estimations fall within a factor of ten from
test results /11/. The distribution can be seen in table 5.

TABLE 5

Result predicted within a factor of: % N (cumulative)
2 42 671

4 67 1,069

6 78 1,235

8 33 1,323

10 86 1,368

In modern LD, tests using small numbers of animals, statistical variation is
often within a factor of 2-4, and inter-laboratory variations of up to 10 are not
uncommon /12/. While the TOPKAT model is clearly not perfect, it is still
considered sufficient to give an approximation for the suggested least strict
classification for acute toxicity, Xn;R22. However, the accuracy of the model
is not considered to be sufficient to differentiate between the three different
levels of acute toxicity (“hamful”, “toxic” and “very toxic”). It is therefor
important to recognize, that there will be substances, though given with the
advisory classification Xn;R22 on the list, which on the basis of for instance
animal test should be classified as T;R25 or Tx;R28.

Where TOPKAT was able to make a robust prediction (AOK) it found 57%
of all chemicals to have an acute oral LD, in rat of < 2,000 mg/kg. The
percentage of chemicals with acute toxicity’s of < 2,000 mg/kg for 12,632
chemicals tested for acute toxicity in rat found in the Registry of Toxic Effects
of Chemical Substances (RTECS 1998) /52/ was 61%. That these two
percentages are so similar is not surprising, since RTECS data was also the
chief source of biological information used to construct the TOPKAT model.

A schematic diagram of the systematic evaluation is given in figure 2.



FIGURE 2 THE SYSTEMATIC EVALUATION

Test data: No Test data: Test data: Test data:
LD,, oral, mouse LD,, iv, mouse No LD, ip, mouse LD,, iv, mouse

—pr and T—p —pr

LD,, ip, mouse

Yes ¢ Yes i Yes iyes

LD, oral, mouse LD,, oral, mouse LD,, oral, mouse LD,, oral, mouse

QSAR 2* QSAR 3 QSAR 4 TOPKAT

<

LD, oral, rat QSAR 1°

LD, oral, rat < 2,000 mg/L

Xn;R22

* QSAR 1-4 is given in Table 4

Approximately 10,200 compounds were estimated as having an acute LD_ in
rat of 2,000 mg/kg or less’. About 700 were removed by expert judgement in
an attempt to exclude amino-acid and protein-type compounds which were
considered likely to break down due to the effects of gastric acidity, or
substances for which gastric absorption was expected to be poor. This
resulted in 9,538 substances with an advisory classification of Xn;R22.

2.4 SENSITIZATION BY SKIN CONTACT

EU criteria for classification

Classification as sensitizing by skin contact, R43 (“May cause sensitization by
skin contact™), is based either on animal studies or practical experience or
combinations thereof. The animal criterion is based on either an adjuvant or
non-adjuvant test.

"TOPKAT calculations were also performed for Rat Chronic Lowest Observed
Adverse Effect Level. Cross validated accuracy of this model was similar to that used
for acute toxicity, with 95% of predictions being within a factor of 3-5 of the
measured values /13,44/. However, as there is no EU classification criteria related
specifically to this endpoint (but rather to “serious morphological or toxicological
effects after repeated dosing, R48”) no classification suggestions were applied for this
endpoint.
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Different adjuvant tests exist, but the Magnusson-Kligmann’s method
(GPMT: Guinea Pig Maximization Test) is preferred. Response in 30% of
the animals results in classification. For a non-adjuvant test (for example the
Biiehler test) 15% responding animals is regarded as positive. The human
data can be results from patch testing, case studies or epidemiological studies.

Evaluation based on OSAR models
Two approaches were used to estimate contact sensitisation /14,15/.

The first approach uses two TOPKAT QSTR models. The first model was
used to predict “Allergy versus non-allergy”, and, in cases where this was
positive, the second model was used to predict “Strong versus weak/moderate
allergy”. The models used were primarily related to the GPMT. Only
predictions of “Strong allergy” were considered as being likely to fulfill the
EU criteria for R43.

In a second approach, predictions were also made using M-CASE. The data
set used to produce the M-CASE models differed somewhat from the
TOPKAT set, in that both data from the GPM'T and human data were
represented. Only positive predictions with M-CASE scores of > 40
(corresponding to “very active”) were selected.

TABLE 6 THE MODELS USED

Model Technical specifications
TOPKAT (v. 5.011998) n=389 GPMT
No Sensitization vs Any Cross validation result (Q?) /14/:

Sensitivity 84-94%
Specificity 87-96%

TOPKAT (v. 5.011998) n=266 GPMT

Strong vs Weak/Moderate Cross validation result (Q?) /14/:
Sensitivity 88-96%

Specificity 88-98%

M-CASE (v. 3.320 1999) n=1,034 GPMTor data from human experience
Model A33: Cross validation result (3*10% out) /15/:
Allergic Contact dermatitis Sensitivity 69 — 89%

Specificity 89— 94%
Chi* > 50, p < 0.0001

External validation of both TOPKAT and M-CASE models was also
attempted using confidential results from the EU New Chemicals program.
Using the two-stage TOPKAT model (n= 64 AOK predictions) 67% of
positives were correctly identified, and 77% of negatives. For M-CASE, (n=
75 AOK predictions) 45% of positives were correctly predicted, and 81% of
negatives /16/.

It is difficult to know how representative New Chemicals are with regard to
the universe of Existing Chemicals. Generally New Chemicals are more
complex structures with higher molecular weights. Perhaps the most
surprising aspect of this exercise was to find that for over three thousand
chemicals that should have been assessed for this endpoint, such a tiny
percentage of useful test data could be found.

Compounds predicted as positive by either TOPKAT or M-CASE according
to the above criteria were selected, provided that they were either AOK in the
first, or contained no unknown fragments or equivocal results in the latter.



While it was considered to use “positive” in both models as a criteria, in the
end this seemed inefficient, not so much duo to lack of concordance between
model predictions, but because the acceptance domains (AOK or all
fragments known) of the two methods differed considerably.

No attempt was made to further reduce the list by systematically applying
expert judgement.

A schematic diagram of the systematic evaluation is given in figure 3.

FIGURE 3 THE SYSTEMATIC EVALUATION
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9,668 chemicals met the above criteria, for which an advisory classification of
R43 is suggested. This strike many experts as being a rather large number of
chemicals and while these models represent the current “state-of-the-art™ it
may indicate that they are over-sensitive. However, it was very difficult to
obtain any reliable indication of how many Existing Chemicals would cause
contact allergy if actually tested in animals or humans. Estimates of
percentages of allergens on Einecs ranged from 5-25%, with some preference
being expressed for 10%, which is the number of Annex I substances
currently classified for this effect. It is not possible, however, to estimate the
influence of confounders on the distribution represented in Annex I. Positive
bias can have been introduced because chemicals testing positive are over-
represented. Negative bias can have been caused by the fact that most of the
chemicals have never been tested at all. The question of numbers remains
open.
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2.5 MUTAGENICITY

EU criteria for classification
The criteria for classification for mutagenicity is divided into 3 different
categories:

Classification as mutagen, category 1 (mutl;R46, may cause heritable genetic
damage) is based on evidence of a causal association between human
exposure to the substance and heritable genetic damage.

Classification as mutagen, category 2 (mut2;R46, may cause heritable genetic
damage) is based on animal studies showing mutagenity to germ cells either in
assays on germ cells or by demonstrating mutagenic effects in somatic cells in
vivo or in vitro as well as metabolic proof that the substances reaches the germ
cells.

The criteria for classification as mutagen, category 3 (mut3;R40, possible
risks of irreversible effects) is based either on in vivo mutagenicity tests or on
cellular interactions with in vitro tests acting as supportive evidence. For this
classification, it is not necessary to demonstrate germ cell mutations.

Evaluation based on QSAR models

A number of models were applied for this endpoint. The different models
predict a number of genotoxicity endpoints. Induction of micronuclei i vivo,
was required, as this demonstrates chromosomal damage in somatic cells
vivo. The remaining endpoints reflect iz vitro genotoxicity, where positive
results would not normally lead to classification for this effect. However,
positive results for these endpoints provide supporting evidence for data from
i vivo estimates.



TABLE 7 THE MODELS USED

Model Technical specifications
M-CASE (v. 3.320 1999) n=784
Model A2E: Cross validation result (3*10% out) [24/:

Structural Alerts for DNA Reactivity | Sensitivity 85-98%
Specificity 60-69%
Chi* >22, p< 0.0001

M-CASE (v. 3.320 1999) n=238 GeneTox chemicals
Model A62: Cross validation result (3*10% out) /30/:
Induction of Micronuclei Sensitivity 80 —100%

Specificity 50 — 70%
Chi* >4, p <0.05

TOPKAT (v. 3.01,1998) n=1,866

Salmonella (Ames) Mutagenicity, Cross validation result (Q?) /25/:
10 sub-modules with sensitivities and specificity’s of 75-
100%.

External evaluation (Danish EPA, 1998, n=118) /21/: 82%
correct negative predictions,
76% correct positive predictions

M-CASE (v. 3.320 1999) n=2,034 NTP or GeneTox tests

Model A2H: Cross validation result (3*10% out) /27/:
Salmonella (Ames) Mutagenicity Sensitivity 75-78.5%

Specificity 78.2 — 90%

Chi* >150, p <0.0001

M-CASE (v. 3.320 1999) n=233 NTP tests in cultured CHO cells
Model A61: Cross validation result (3*10% out) /28/:
Chromosomal Aberrations Sensitivity 44-80%

Specificity 50-80%
Chi* < 2, p>0.15
(further validation being undertaken)

M-CASE (v. 3.320 1999) n=210 NTP thymidine kinase in L5178Y cells
Model A2F: Cross validation result (3*10% out) /29/:
Mutations in Mouse Lymphoma Sensitivity 64-100%

Specificity (not determined)

Chi* = 2, p=0.15

(further validation ongoing)

If classification had been proposed on measured data, a positive result in the
in vivo micronucleus test would have been sufficient evidence on which to
base the classification. Since the data is predicted and not measured data,
additional support for the prediction was obtained by including a number of
other indicators of genotoxicity.

It is not suggested that positive iz vitro evidence should also be necessary
when classifying substances with positive iz vivo test data. However, it was not
felt that the QSAR model for the mouse micronucleus test alone was
sufficient, and data estimates from additional QSAR’s relevant to the endpoint
were therefor used to increase the likelihood of a correct positive prediction.

Chemicals for which model estimates were positive for mouse micronucleus
and structural alerts for DNA reactivity (here an exception was made in that
predictions with one unknown fragment were also accepted) and which also
had two positive genotoxicity endpoints, passed the criteria for the systematic
evaluation.

Two models for Salmonella (Ames) mutagenicity were used, a TOPKAT and
a M-CASE module respectively. This related primarily to the fact that the
models differed with regard to domain, and often a robust prediction was only
available for one model. If robust predictions were available for both models,
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and in disagreement, this was taken into account on a case-by-case basis

during the final evaluation.

A schematic diagram of the systematic evaluation is given in figure 4.

FIGURE 4 THE SYSTEMATIC EVALUATION
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2,272 Einecs chemicals met the criteria in the systematic evaluation.

As none of these models identifies germ cell mutagenicity, the current

QSAR’s do not allow discrimination between the EU categories for mutagenic
effects in the three categories and the lower classification is therefore assigned

as advisory classification in all cases.

Expert judgment was undertaken to confirm the robustness of the predictions
of these 2,272 chemicals. This process included examination of the 2- or 3-d

chemical structure, and visual comparison with test data within structural

groups. If this procedure raised any doubt, substances were removed from the

list for more detailed consideration in the future. This resulted in a final
selection of 1,678 substances with an advisory classification mut3;R40.




2.6 CARCINOGENICITY

EU criteria for classification
This end-point can result in classification in 3 different categories:

Classification as carcinogen in category 1 (carc1;R45, Toxic; may cause
cancer or carc1;R49, Toxic; may cause cancer by inhalation) is based on
strong causal relationship in humans.

Classification as carcinogen in category 2 (carc2;R45, Toxic; may cause
cancer or carc2;R49, Toxic; may cause cancer by inhalation) is based on
conclusive animal data from 2 species or 1 species with supportive evidence
such as genotoxic effects in vitro or in vivo.

Classification as carcinogen in category 3 (carc3;R40, Harmful; possible risks
of irreversible effects™) is subdivided into two:

a) Well-investigated substances with restricted tumorigenic effects. It is
normally based on clear data of tumour formation in one species.
Mutagenicity data iz vitro and in vivo can be used as supportive evidence.

b) Substances that are insufficiently investigated, but raising concern for
man.

Evaluation based on OSAR models

While there are many non-genotoxic carcinogens acting by a wide variety of
often-unknown mechanismes, it was chosen to focus here on chemicals likely
to cause cancer through a genotoxic mechanism. Therefor a pre-selection
criteria for genotoxicity was set up.

The criteria for the pre-selection for carcinogenicity was a positive estimate
for structural alerts for DNA reactivity (AOK or one unknown fragment) and
two positive AOK genotoxicity predictions out of five models for genotoxicity.
The technical specifications for the models used to predict genotoxicity is
given in the chapter ”Mutagenicity”.

As opposed to the selection criteria for mutagenicity, a positive mouse
micronucleus test was not demanded, as not all genotoxic carcinogens are
necessarily clastogenic (cause loss, addition or rearrangement of parts of

chromosomes). This gave a pre-selection of 3.362 Einecs chemicals.

A total of ten cancer models were available, plus four sub-models.
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TABLE 8 THE MODELS USED

Model

Technical specifications

TOPKAT (v. 3.011998)
NTP Carcinogenicity: Male Rat

TOPKAT (v. 3.011998)
NTP Carcinogenicity: Female Rat

TOPKAT (v. 3.011998)
NTP" Carcinogenicity: Male Mouse

TOPKAT (v. 3.011998)
NTP Carcinogenicity: Female Mouse

366 NTP rodent studies

Cross validation result (Q?) /32/:
Sensitivities of 82-87%
Specificity’s of 82-88%

TOPKAT (v. 5.01n 1998)
FDA Carcinogenicity: Male Rat

Sub-model: Single vs Multiple Organ Tumors

n=384

Cross validation result (Q?) /33/:
Sensitivity 91%

n=131

Cross validation result (Q?) /33/:
Sensitivity 91%

Specificity 96%
TOPKAT (v. 5.0 Feb. 1998) n=383
FDA™ Carcinogenicity: Female Rat Cross validation result (Q?) /33/:
Sensitivity 84%
__________________________________________________ Specificity 89% ]
Sub-model: Single vs Multiple Organ Tumors n=125

Cross validation result (Q?) /33/:
Sensitivity 92%
Specificity 96%

TOPKAT (v. 5.0 Feb. 1998)
FDA Carcinogenicity: Male Mouse

Sub-model: Single vs Multiple Organ Tumors

n=316

Cross validation result (Q?) /33/:
Sensitivity 82%

n=93

Cross validation result (Q?) /33/:
Sensitivity 93%

Specificity 94%

TOPKAT (v. 5.0 Feb. 1998)
FDA Carcinogenicity: Female Mouse

Sub-model: Single vs Multiple Organ Tumors

n=312
Cross validation result (Q?) /33/:

Sensitivity 86%

n=100

Cross validation result (Q?) /33/:

Sensitivity 95%

Specificity 95%

M-CASE (v. 3.3201999)
Carcinogenic Potency Database model: Rat
(Danish EPA version of AoD, Feb. 2000)

n=870 chemicals from the CPDB
Cross validation result (3*10%) [34/:
Sensitivity 52-67%

Specificity 63-68%

Chi* = 6, p<0.014

(further validation ongoing)

M-CASE (V. 3.320 1999)
Carcinogenic Potency Database model: Mouse
(Danish EPA version of AoE, Jan. 2000)

n=y20 chemicals from the CPDB
Cross validation result (3*10%) /35/:
Sensitivity 45-50%

Specificity 64-72%

Chi*=2,p=o0.15

(further validation ongoing)

* NTP: National Toxicology Program, USA
** FDA: Food and Drug Administration, USA

The accuracy of these models can be difficult to determine, as there are few

independent tests that have not already

been used in the construction of the

models themselves, which can be used for an independent assessment. This is
particularly the case for TOPKAT’s models, where the only real estimates
consist of the producers own “1 out” Q’ cross-validations. For M-CASE,

other statistical methods are available.



In a long-running project, where several cancer models predicted the outcome
for N'TP chemicals which had not yet been tested, upon completion of these
tests (for 45 substances) the general conclusion was that accuracy of around
70% was achieved for clearly carcinogenic or non-carcinogenic substances
/31/. Due to the small number of chemicals in this analysis it is difficult to
know how much weight can be assigned to the conclusion.

3,362 substances met the pre-selection criteria for genotoxicity. For a
substance to be selected as a probable carcinogen it was necessary for the
following criteria to be fulfilled:

At least two positive predictions (sub-models excluded) for carcinogenicity.
An exception was made for the M-CASE CPDB models. Because the data is
less homogeneous, both rat and mouse predictions had to be positive to count
as one prediction, and in addition to this the carcinogenic potency had to
include TD,’s for tumor induction of less than 1,000 mg/kg/day. These two
CPDB models were developed by Danish EPA using M-CASE methodology
which is described for this data set in the following references /34,35,40/.

If one or more positive tests could be seen (part of the training set for the
model) for any cancer endpoint, this took precedence over model results and
resulted in an over-all positive classification recommendation. While in most
cases this resulted in little change (the models are heavily biased towards
making a correct prediction for substances used to make them), it was felt that
there was no reason to artificially reduce the quality of the advisory
classification by neglecting to use data, which happen to be present. A
schematic diagram of the systematic evaluation is given in figure 5.
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FIGURE 5 THE SYSTEMATIC EVALUATION
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* The two models for Salmonella mutagenicity can together not count as more then one positive prediction
** The two M-CASE models for mouse and rat have to both be positive in order to count as one positive
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According to these criteria, 1,272 substances were selected for advisory
classification for carcinogenicity. Expert judgment was performed on the
QSAR:s. In this proces, all data was used including predictions of TOPKAT
FDA Carcinogenicity sub-models, the probability of rapid metabolism or
excretion, and where appropriate, predictions of aryl hydroxylase activity /37/.
Where any doubts were raised, substances were removed from this version of
the list to be considered in more detail in the future.




This resulted in 652 substances selected for advisory classifications for
carcinogenicity. It is not felt that the models employed allow discrimination
between classification in the three categories, so the lower classification
Carc3;R40 was applied in all cases.

2.7 DANGER TO THE AQUATIC ENVIRONMENT

EU criteria for classification

The classification criteria are composed of three main elements:
Biodegradability, Bioconcentration potential, and Toxicity to aquatic
organisms. Classifications are assigned according to the following scheme:

TABLE 9 CLASSIFICATION CRITERIA

Classification Criteria for acute toxicity to aquatic
organisms”
N;Rs0 Acute toxicity < 1.0 mg/!

(Dangerous for the environment; very toxic to
aquatic organisms)

N;Rs50/53 Acute toxicity < 1.0 mg/!
(Dangerous for the environment; very toxic to and not readily degradable
aquatic organisms; may cause long-term adverse or BCF™> 100

effects in the aquatic environment)

N;R51/53 Acute toxicity <10 mg/I
(Dangerous for the environment; toxic to aquatic and not readily degradable

organisms; may cause long-term adverse effects in | o; BCF > 100
the aquatic environment)

R52/53 Acute toxicity < 100 mg/!
(Harmful to aquatic organisms; may cause long- and not readily degradable
term adverse effects in the aquatic environment)

Rs53 Solubility in water <1 mg/I
(Harmful to aquatic organisms) and not readily degradable

and BCF =100

* The lowest effect concentration for fish, daphnia or algae is used
** BCF: Bioconcentration factor

Evaluation based on QSAR models

Advisory classifications were assigned on basis of combinations of estimates
for biodegradation, bioconcentration and acute toxicity according to the
criteria in table 9. Classification with risk phrase R53 alone was not done in
this exercise, as the strong co-linearity between water solubility and
bioconcentracion factor made it redundant.

Biodegradation

Biodegradability was estimated using the Syracuse BIOWIN program (v.
3.02) /17,41/. Only the linear equation for rapid/non-rapid biodegradation was
applied. Previous validation of this parameter compared with MITTI
“ready/not-ready results showed that while a number of “not-ready”
chemicals were missed, 93% of “not ready” predictions were correct /18/. In
other words while this model may fail to identify all “non-ready” substances,
the number of false predictions for lack of degradability will be acceptably
low. A total of about 14,000 Einecs chemicals were found to be “not-readily
degradable” according to this criteria /51/".

" While too late for this phase of the project, Danish EPA has now developed a M-
CASE model for ready biodegradation based on new MITT data, which appears to
offer significantly better predictions. 81% correct “not ready” and 76% correct
“ready” predictions (3x10% out). An external validation using 72 “not ready”
chemicals that had not been used to produce the model gave 89% correct predictions.
Analysis and fine-tuning of this model is continuing /19/.
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Bioconcentration

The classification and labeling guidelines prefer measured data for
Bioconcentration, but as this is seldom available, a LogP (octanol/water) of
greater than three is recommended as an indication that BCF will be 100 or
greater, in accordance with the linear equation of Vieth and Kosian /41/.
While a good rule-of-thumb, this relation both over- and underestimates BCF
for many classes of chemicals, and takes no account of the fact that
bioconcentration is a bilinear function of LogP, decreasing when this is
sufficiently high.

Bioconcentration was therefore predicted using Syracuse BCFWIN (v. 2.13),
a method based on a combination of logP (octanol-water) relations and
structural fragment categories. This method was evaluated by it’s authors as
having a statistical accuracy of R’= 0.74 (n = 694, S.D. 0.65, mean error =
0.47), which is a significant improvement over the standard equation of Vieth
and Kosian (log BCF = 0.85 * log Kow — 0.70) where predictions for the
same 694 compounds had a statistical accuracy of R* = 0.32 (S.D. 1.62 and
mean error = 1.12) /20/. About 11,000 Einecs chemicals were found with
BCF estimates of equal to or greater than 100.

No attempt was made to further assess bioaccumulation potential caused by
possible presence in the diets of aquatic organisms, as it was not felt that an
appropriate general model was available.

Acute toxicity

For aquatic toxicity classifications, values (L(E)C, ) for fish, daphnia and
algae are recommended (although seldom available for most existing
chemicals). In the current exercise it was decided to only use predictions for
fish, due to their robustness and the availability of high quality test data for
model construction.

For Acute aquatic toxicity to fish a M-CASE model developed by Danish
EPA using 96h LD, data on 569 chemicals from the Duluth Fathead minnow
Database /22/ was applied. The model had an R” of 0.85. Cross-validation of
this model gave a Q” of 0.735 (3*10% out). A description of the M-CASE
methodology used for the Fathead minnow data can be found in the following
references /21,42/. Only predictions within the optimum prediction space of
the model (no fragment or other warnings) were used.

As there was insufficient test data on the Fathead minnow for very lipophylic
substances the M-CASE model was only applied for chemical substances with
LogP of six or less. Another relationship was used for chemicals with a LogP
of greater than six. Here, all substances were assumed to act by non-polar
narcosis, and toxicity at equilibrium was estimated according to a relation to
the predicted Bioconcentration factor:

LC,, (equilibrium) = 8.15 mmol /BCF

The choice of 8.15 mmol corresponds to the theoretical level inducing aquatic
effects represented by the non-polar narcosis fish QSAR recommended in the
EU TGD /41/. Non-polar narcosis Lethal Body Burden’s for fish are
generally assumed to be within the range of about 2-8 mmol /23,58/.




While simple L.ogP (octanol/water) relationships exist for predicting the non-
polar narcotic toxicity for fish, daphnia and algae /41/, these do not distinguish
specific toxicity’s unique to any of the three taxa, and were not felt to offer
any advantage over using the fish models alone, which also adequately predict
non-polar narcosis. For all practical purposes, non-polar narcosis induces
effects at the same concentration levels in all three taxa /18/.

Using both estimates, about 10,000 Einecs chemicals were found with
toxicity’s to fish of LC,, < 100 mg/l.

A schematic diagram of the systematic evaluation is given in figure 6.

FIGURE 6 THE SYSTEMATIC EVALUATION

M-CASE model: Acute Aquatic Toxicity, LC,, for Fathead Minnow
i LCso < 1.0 mg/L i 1.0 mg/L < LC50 < 10.0 mg/L i 10.0 mg/L < LCs0 < 100.0 mg/L
Syrecuse Biowin: Syrecuse Biowin: Syrecuse Biowin:
Biodegradation Biodegradation Biodegradation
Ready Not ready Ready Not ready Not ready
biodeg. biodeg. biodeg. biodeg. biodeg.
Syracuse Biowin: Syracuse Biowin:
BCF BCF
|
BCF BCF BCF
<100 >100 =100
v 4 h 4
N;Rs0 N;Rs50/53 N;R51/53 R52/53

A total of 8,731 substances were selected according to one of the four
classification categories as indicated above. Considering that the number of
robust (AOK) predictions for fish toxicity was just fewer than one-half of the
chemicals screened, this number seems in reasonable concordance with what
would be expected for Existing Chemicals.

The advantages of being able to predict toxic effects specific to both fish,
daphnia and algae are obvious, and this can hopefully be accomplished in the
future. A M-CASE model for acute toxicity to daphnia has recently been
completed by Danish EPA (n = 574, R’= 0.826, 3*10% out Q° = 0.692). It is
still being refined, and predictions for all chemicals will soon be available. A
M-CASE model for toxicity to algae is under development.

33




34



3 References

10.

11.

12.

13.

Danish Ministry of Environment and Energy Statutory Order no. 1065 of
November30, 2000, on Classification, Packaging, Sale and Storage of
Chemical Substances and Products.

Einecs (European Inventory of Existing Commercial Chemical
Substances). O.J. C146A, 15.6.1990, p.1.

Allanou et al., 1999: Remi Allanou, Bjern Hansen and Yvonne van der
Bilt (1999): Public Availability of Data on EU High Production Volume
Chemicals (EUR 18996 EN).

Niemeld, 1992: EU project; Priority Setting for the Purpose of future
Classification and Labelling of Dangerous Substances (Contract No.
B91/B4.3044/12200), Danish Environmental Protection Agency,
Copenhagen, November 1992 and Jay Niemeld, 1994, Danish EPA,
working document with update of the data from the EU project on
priority setting for future classification and labelling (available on request).

Danish Ministry of Environment and Energy, Statutory Order no. 733 of
July 31, 2000, List of Dangerous Substances.

European Commission: Commission communication 90/C146A/01
pursuant to Article 13 of Council Directive 67/548/EEC of 27 June 1967
on the approximation of the laws, regulations and administrative
provisions relating to the classification, packaging and labeling of
dangerous substances, as amended by Directive 79/831/EEC -

Oxford Molecular, Chem-X version July 1998, SMILES to 3-D
conversion module.

Niemela, J., “Non-Structural Activity Coefficients for Acute Oral Toxicity
in the Mouse and Rat”, Danish EPA, working document, 1992 (available
on request)

Niemela, J., “Acute Toxicity versus rout of Administration in Mice,”
Danish EPA, working document, 1995 (available on request)

Health Designs Inc., “TOPKAT 3.0 QSAR Module Summery, Rat Oral
LD.,”, v31d50.d94, Rochester, New York, U.S.A., 1997

Niemela, ]J., “Computer Predictions of LD in the Rat using TOPKAT v.
5.01, Danish EPA, working document, 1999 (available on request).

Hunter, W.]., et. al., “Intercamparison Study on the Determination of
Single Administration Toxicity in Rats,” J. ASSOC. AFF. ANAL.
CHEM., Vol. 62, no. 4, 1979.

Health Designs Inc., “TOPKAT 3.0 QSAR Model Summery, Rat
Chronic LOAL,” v3loael.595, Rochester, New York, U.S.A., 1997.

35



36

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

Health Designs, Inc., “New Skin Sensitization Model,” Computational
Toxicology News, no. 21, 1998

M-CASE; Model A33 Allergic contact dermatitis, July, 1998

Niemela, J., “QSAR’s for the Estimation of Sensitization Potential,”
Danish EPA, working document, 1999 (available on request).

Howard, P.H., et. al., “Predictive Model for aerobic biodegradability
developed from a file of evaluated biodegradation data,” Environ.
Toxicol. Chem, 11; 593-603, 1992. (see also BIOWIN Biodegradation
Probability Program for Microsoft Windows 3.1, Syracuse Research
Corporation, Syracuse, NY, U.S.A., 1994.

Pedersen, F., Tyle, H., Niemela, J., Guttman, B., Lander, L., and
Wedebrand, A., 1995, ”Environmental Hazard Classification — data
collection and interpretation guide for substances to be evaluated for

classification as dangerous to the environment. Appendix 9; Validation of
the BIODEG Probability Program.” TemaNord Report 589, 153-156.

Niemeld, J., and Wedebye, E.B.,, “MITIMOD, M-CASE Model for
Aerobic Biodegradation, Danish EPA, internal working document, April,
2000.

Meylan, W.M.,, et. al., “Improved Method for Estimating
Bioconcentration Factor (BCF) from Octanol-Water Partition
Coefficient,” Third Update Report, Syracuse Research Corporation,
Syracuse, NY, U.S.A. August, 1997.

Klopman, Gilles, Saiakov, R., and Rozenkranz, S.,, ”Multiple Computer-
Automated Structure Evaluation Study of Aquatic Toxicity II. Fathead
minnow,” Environmental Toxicology and Chemistry, Vol. 19, No 2, pp.
441-447.

Brooke, L. T\, et. al., “Acute Toxicities of Organic Chemicals to Fathead
Minnows (Pimephales promelas”, Center for Lake Superior
Environmental Studies, University of Wisconsin — Superior, 1988.

Hermens, J.L., et. al., “Aquatic Toxicity of Polar Narcotic Pollutants,”
University of Utrecht, Utrecht, Netherlands, 1998

M-CASE Structural Alerts for DNA Reactivity (“Ashby fragments”,
model A2E, July 1998.

Health Designs Inc., “TOPKAT 3.0 QSAR Module Summery:
Mutagenicity (Ames), V3mut.d94, New York, U.S.A., 1997

Niemela, J., “Computer Prediction of Ames Test Mutagenicity (progress
report, May 1998),” Danish EPA, working document, 1998 (available on
request)

M-CASE Salmonella (Ames) Mutagenicity, model A2H, data evaluation,
July 1999.



28. M-CASE Chromosomal Aberrations, model A61, data evaluation, July
1998

29. M-CASE Mutations in Mouse Lymphoma, model A2F, data evaluation,
July 1998.

30. M-CASE Induction of Micronuclei, model A62, data evaluation, July
1998.

31. Zhang, Y.P., et. al., “Development of Methods to Ascertain the
Predictivity and Consistency of SAR Models: Application to the U.S.
National Toxicology Program Rodent Carcinogenicity Bioassays,” Quant.
Struct-Act. Relat, 16, 290-295, 1997.

32. Health Designs Inc., “TOPKAT 3.0 QSAR Module Summary: Rodent
Carcinogenicity, v3carc.995, NY, U.S.A., 1997.

33. Health Designs Inc., “Computational Toxicology News, “MTA with
FDA produces new Carcinogenicity QSTR’s,” no. 21, February 1998.

34. Cunningham, A.R., Klopman, G., Rosenkranz, H.S., "Identification of
structural features and associated mechanisms of action for carcinogens in
rats", Mutation Research, 405; 9-28, 1998.

35. Cunningham, A.R., Rosenkranz, H.S., Zhang, Y.P., Klopman, G.,
"[dentification of "genotoxic" and "non-genotoxic" alerts for cancer in
mice: The Carcinogenic potency database," Mutation Research, 398; 1-
17, 1998.

36. Gold, L.S., et. al., “The Carcinogenic Potency Database,“ National
Institute of Environmental Health Sciences, NIEHS Center, University of
California, Berkeley, 1999

37. M-CASE, Binding to Aryl Hydrocarbon Hydroxylase, Model A68, July
1998.

38. Klopman, G.,"MULTICASE 1. A Hierarchical Computer Automated
Structure Evaluation Program," Quant. Struct.-Act. Relat., 11; 176-184,
1992.

39. Oxford Molecular Group, Inc., Health Designs, Inc., Computational
Toxicology, "TOPKAT 5.0 Reference Manual," 1997.

40. Mathews, E.J., Contrera, J.F., "A New Highly Specific Method for
Predicting the Carcinogenic Potential of Pharmaceuticals in Rodents
Using Enhanced MCASE QSAR-ES Software", Reg. Tox. and Pharm.,
28;242-264, 1998.

41. European Commission, ”Technical Guidance Document in Support of
commission directive 93/67EEC on Risk Assessment for New Notified
Substances and Commission Regulation (EC) No. 1488/94 on Risk
Assessment for Existing Substances,” Part III, ISBN 92-827-8013-9,
1996, p. 554.

37



38

42.

43.

44.

45.

46.

47.

48

49.

50.

51.

52.

53.

54.

Klopman, G., Saiakov, R, Rosenkranz, HS, Hermans, JLM, ”’M-CASE
study of aquatic toxicity, I. Guppy,” Envion. Toxicol. Chem. 18: 2497-
2505.

G. Klopman and O.T. Macina, ”Drug Design Based on Artificial
Intelligence,” Computer Aided Innovation of New Materials II, Elsevier
Science Publishers, 1992.pp 1135-1140.

Mumtaz, M.M., et. Al. ”Assessment of effect levels of chemicals from
quantitative structure-activity (QSAR= models. I. Chronic lowest-
observed-adverse-effect (LOAEL),” Toxicology Letters, 79 (1995), 131-
143

Gomber, V. K., ”Quantitative Structure-Activity Relationships in
Toxicology; From Fundamentals to Applications,” Health Designs Inc.,
183 East Main Street, Rochester, NY 14604, USA.

O. Mekenyan, S. Karabunarliev and D. Bonchev, The OASIS Concept
for Predicting the Biological Activity of Chemical Compounds, J. Math.
Chem., 4, 207-215 (1990).

O. Mekenyan, S. Karabunarliev and D. Bonchev, The Microcomputer
OASIS System for Predicting the Biological Activity of Chemical
Compounds, Comput. & Chem., 14, 193-200 (1990).

. Mekenyan, et. al. “COREPA Method Used for Evaluation of Reactivity

Profile for High ER Binding Affinity,” Quant. Struct.-Act. Relat., 18:139-
153, 1999.

Moudgal, C. J., Lipscomb, R. M. Bruce, “Potential health effects of
drinking water disinfection by-products using quantitative structure
toxicity relationships, Toxicology, vol 147, 2000, pp. 109-131.

Eriksson, L, Johansson, E., Keteth-Wold, N., and Wold, S. “Introduction
to Multi- and Megavariate Analysis using Projection Methods (PCA &
PLS,” Umetrics, Sweden, 1999 pp. 251-260.

OECD Environmental Health and Safety Publications Series on Testing
and Assessment, No. 24, “Revised Draft Guidance Document on the use
of the Harmonized System of Classification of Chemicals which are
Hazardous for the Aquatic Environment,” Environment Directorate,
Organization for Economic Cooperation and Development, Draft, Oct.
2000 (ENV/IM/HCL (2000) 15/REV?2).

Registry of Toxic Effects of Chemical Substances (RTECS), The
National Institute of Occupational Safety and Health, Washington, D.C,
1998 (Silver Platter electronic version).

M-CASE, Users Guide, Version 3.30 (Rev. 1.0), Multicase inc., 25825
Science Drive Park, suite 100, Cleveland, OH, 44122.

Rosenkranz, H.S., et.al, “Development, Characterization and Application
of Predictive Toxicology Models,” SAR and QSAR in Environmental
Research, Vol. 10, pp. 277-298, 1999.



55.

56.

57.

58.

Wedebye, E.B., and Niemela, J. R., “Database with QSAR Estimates for
more than 166,000 Chemicals,” QSAR 2000, Ninth International
Workshop on Quantitative Structure Activity Relationships in

Environmental Sciences, September 16-20 2000, Bourgas, Bulgaria.
Abstracts, PV.2

Enslein, Kurt, Health Designs, Inc., 183 E. Main Street, Rochester, NY
14604: ”QSTR applications in acute, chronic, and developmental toxicity,
and carcinogenicity”.

Council Directive 67/548/EEC on the approximation of the laws,
regulations and administrative provisions relating to the classification,
packaging and labelling of dangerous substances.

ECETOC Technical Report No. 67, ”The Role of Bioaccumulation in
Environmental Risk Assessment: The Aquatic Environment and Related
Food Webs”, 1995.

39



