Human Bioaccessibility of Heavy Metals and PAH from Soil

Appendix

Published data on bioaccessibility of 7 heavy metals and 7 PAH from soil

Data for As

 Click on the picture for html-version of: ‘‘Table page 107‘‘
Click on the picture for html-version of: ‘‘Table page 107‘‘

Click on the picture for html-version of: ‘‘Table page 110‘‘
Click on the picture for html-version of: ‘‘Table page 110‘‘

Click on the picture to see the html-version of: ‘‘Page 113‘‘
Click on the picture to see the html-version of: ‘‘Page 113‘‘

Data for Cu

Click on the picture to see the html-version of: ‘‘‘‘
Click on the picture to see the html-version of: ‘‘Data for Cu‘‘

Data for Ni

Click on the picture to see the html-version of: ‘‘Data for Ni‘‘
Click on the picture to see the html-version of: ‘‘Data for Ni‘‘

Click on the picture for html-version of: ‘‘Table page 118‘‘
Click on the picture for html-version of: ‘‘Table page 118‘‘

Data for Zn

Click on the picture to see the html-version of: ‘‘Data for Zn‘‘
Click on the picture to see the html-version of: ‘‘Data for Zn‘‘

Data for PAH

Click on the picture to see the html-version of: ‘‘Data for PAH‘‘
Click on the picture to see the html-version of: ‘‘Data for PAH‘‘

References for appendix

/1/ Barkowski, D., Günther, P., Krause, H., and Machtolf, M. Methoden und Ergebnisse zur Resorptionsverfügbarkeit relevanter Schadstoffe in kontaminierten Böden und Materialen. 1999. Berlin, Umweltbundesamt. 

/2/ Hack, A., Welge, P., Wittsiepe, J., and Wilhelm, M. Aufnahme und Bilanzierung (Bioverf¨gbarkeit) ausgewählter Bodenkontaminanten im Tiermodel (Minischwein). 2002. Bochum, Ruhr-Universität Bochums.

/3/ Rodriguez,RR, Basta,NT, Casteel,SW, Pace,LW: An In Vitro Gastrointestinal Method to Estimate Bioavailable Arsenic in Contaminated Soils and Solid Media. Environmental Science & Technology 33:642-649, 1999 

/4/ Ellickson,KM, Meeker,RJ, Gallo,MA, Buckley,B, Lioy,PJ: Oral Bioavailability of Lead and Arsenic from a NIST Standard Reference Soil Material. Archives of Environmental Contamination and Toxicology 40:128-135, 2001 

/5/ Hamel,SC, Ellickson,KM, Lioy,PJ: The estimation of the bioaccessibility of heavy metals in soils using artificial biofluids by two novel methods: mass-balance and soil recapture. The Science of the Total Environment 243/244:273-283, 1999 

/6/ Ontario Ministry of the Environment. Soil investigation and human health risk assessment for the Rodney Street Community. 2002. Ontario Ministry of the Environment. 

/7/ Ruby,MV, Davis,A, Schoof,R, Eberle,S, Sellstone,CM: Estimation of Lead and Arsenic Bioavailability Using a Physiologically Based Extraction Test. Environmental Science & Technology 30:422-430, 1996 

/8/ Cave, M. R., Wragg, J., Palumbo, B., and Klinck, B. A. Measurement of the bioaccessibility of arsenic in UK soils. 2002. Nottingham, British Geological Survey. 

/9/ Davis,A, Ruby,MV, Bergstrom,PD: Bioavailability of Arsenic and Lead in Soils from the Butte, Montana, Mining district. Environmental Science & Technology 26:461-468, 1992 

/10/ CB Research International Corporation. Development of a Physiological Relevant Extraction Procedure. CBR 423. 1993. Sydney, Australia, CBR International.

/11/ Williams, T. M., Rawlins, B. G., Smith, B., and Breward, N. In-Vitro Determination of Arsenic Bioavailability in Contaminated Soil and Mineral Beneficiation Waste from Ron Phibun, Southern Thailand: A Basis for Improved Human Risk Assessment. Environmental Geochemistry and Health 20: 169-177. 1998. 

/12/ Kim,J-Y, Kim,K-W, Lee,J-U, Lee,J-S, Cook,J: Assessment of As and Heavy Metal Contamination in the Vicinity of Duckum Au-Ag Mine, Korea. Environmental Geochemistry and Health 24:215-227, 2002 

/13/ Oomen,AG, Hack,A, Minekus,M, Zeijdner,E, Cornelis,C, Schoeters,G, Verstraete,W, van de Wiele,T, Wragg,J, Rompelberg,CJM, Sips,AJAM, van Wijnen,JH: Comparison of Five In Vitro Digestion Models To Study the Bioaccessibility of Soil Contaminants. Environmental Science & Technology 36:3326-3334, 2002 

/14/ Stewart,MA, Jardine,PhM, Barnett,MO, Mehlhorn,TL, Hyder,LK, McKay,LD: Influence of Soil Geochemical and Physical Properties on the Sorption and Bioaccessibility of Cr(III). Journal of Environmental Quality 6: 2002

/15/ Sheppard,SC, Evenden,WG, Schwartz,WJ: Ingested Soil: Bioavailability of Sorbed Lead, Cadmium, Cesium, Iodine, and Mercury. Journal of Environmental Quality 24:498-505, 1995 

/16/ Ellickson, K. M. The Bioaccessibility of Slected Radionuclides and Heavy Metals: an Investigation of Bioaccessibility, Bioavailability and Natural Soil Characteristics. 2001. The State University of New Jersey. 

/17/ Lioy, P. J., Gallo, M. A., Georgopoulos, P., Tate, R., and Buckley, B. Comparison of the Bioavailability of Waste Laden Soils using "In Vivo""In Vitro" Analytical Methodology and Bioaccessibility of Radionuclides for Refinement of Exposure/Dose Estimates. DOE/ER/62315. 1999. Environmental and Occupational Health Sciences Institute. 

/18/ Skowronski,GA, Seide,M, Abdel-Rahman,MS: Oral Bioaccessibility of trivalent and hexavalent chromium in soil by simulated gastric fluid. Journal of Toxicology and Environmental Health 63:351-362, 2001 

/19/ Stewart,MA, Jardine,PhM, Brandt,CC, Barnett,MO, Fendorf,SE, McKay,LD, Mehlhorn,TL, Paul,K: Effects of Contaminant Concentration, Aging, and Soil Properties on the Bioaccessibility of Cr(III) and Cr(VI) in Soil. Soil and Sediment Contamination 2002 

/20/ Mercier,G, Duchesne,J, Carles-Gibergues,A: A new in vitro test to simulate gastric absorption of copper, lead, tin and zinc from polluted soils. Environmental Technology 23:121-133, 2002  

/21/ Mercier,G, Duchesne,J, Carles-Gibergues,A: A simple and fast screening test to detect soils polluted by lead. Environmental Pollution 118:285-296, 2002 

/22/ Davis,A, Ruby,MV, Goad,Ph, Eberle,S, Chryssoulis,S: Mass Balance on Surface-Bound, Mineralogic, and Total Lead Concentrations as Related to Industrial Aggregate Bioaccessibility. Environmental Science & Technology 31:37-44, 1997 

/23/ Ruby,MV, Davis,A, Link,TE, Schoof,R, Chaney,RL, Freeman,GB, Bergstrom,PD: Development of an in Vitro Screening Test to Evaluate the in Vivo Bioaccessibility of Ingested Mine-Waste Lead. Environmental Science & Technology 27:2870-2877, 1993 

/24/ Yand,J, Mosby,DE, Casteel,SW, Blanchar,RW: Lead Immobilization Using Phosphoric Acid in a Smelter-Contaminated Urban Soil. Environmental Science & Technology 35:3553-3559, 2001 

/25/ Yand,J, Mosby,DE, Casteel,SW, Blanchar,RW: In Vitro Lead Bioaccessibility and Phosphate Leaching as Affected by Surface Application of Phosphoric Acid in Lead-Contaminated Soil. Archives of Environmental Contamination and Toxicology 43:399-405, 2002 

/26/ Sips, A. J. A. M., Bruil, M. A., Dobbe, C. J. G., van de Kamp, E., Oomen, A. G., Pereboom, D. P. K. H., Rompelberg, C J M, and Zeilmaker, M. J. Bioaccessibility of contaminants from ingested soil in humans. RIVM 711701012/2001. 2001. Bilthoven, National Institute of Public Health and the Environment. 

/27/ Oomen, A. G., Rompelberg, C J M, Bruil, M. A., Dobbe, C. J. G., Pereboom, D. P. K. H., and Sips, A. J. A. M. Development of an in vitro digestion model for estimating the bioaccessibility of soil contaminants. Archives of Environmental Contamination and Toxicology 44 (3): 281-287, 2003 

/28/ Hack,A, Selenka,F: Mobilization of PAH and PCB from contaminated soil using a digestive tract model. Toxicology Letters 88:199-210, 1996

/29/ Hack,A, Selenka,F, Wilhelm,M: Mobilisierung von PAK durch synthetische Verdauungssäfte aus dem kontaminierten Bodenmaterial einer Altlastenfläche. Umweltmedizin in Forschung und Praxis 3:275-280, 1998

_____________________________________________________________
39Modified according to Rotard
40Modified method, Cd not dissolved or precipitated during ingestion measured
41Modified version developed for food uptake studies
42Mean for paddy soil and agricultural soils, respectively, ranges 50-80%
43No detections above unspecified limit of detection
44Modified according to Rotard
45NIST SRM 2710 standard reference material
46Modified version, stomach step only
47Cr(III) from added Cr(VI)
48100 days after spiking
49Modified according to Rotard
50Mean for paddy soil and agricultural soils, respectively, ranges 28-102%
51 Modified according to Rotard
59Modified according to Rotard
60Mean for paddy soil and agricultural soils, respectively, ranges 13-61%