Human Bioaccessibility of Heavy Metals and PAH from Soil

Table of Contents

Preface

Summary and conclusions

1 Introduction
   1.1 Background
   1.2 Scope
   1.3 Methods

2 Human risk assessment for soil contaminants

3 Physiology of human contaminant uptake
   3.1 Implications of human contaminant uptake physiology for design of bioaccessibility tests

4 Soil contaminants
   4.1 Speciation of PAH in soil
   4.2 Speciation of metals in soil
      4.2.1 Arsenic
      4.2.2 Cadmium
      4.2.3 Chromium
      4.2.4 Copper
      4.2.5 Lead
      4.2.6 Nickel
      4.2.7 Zinc
   4.3 Implications of speciation for design of bioaccessibility tests

5 Quantification of bioavailability
   5.1 Characterisation of source and site
   5.2 In vivo tests
   5.3 In vitro tests

6 Quantification of bioaccessibility
   6.1 Chemical extraction tests
   6.2 Digestion tests
      6.2.1 Product methods
      6.2.2 Methods for pharmaceuticals
      6.2.3 Contaminated soil methods
      6.2.4 Comparisons of contaminated soil methods
   6.3 Bioaccessibility test performance requirements
   6.4 Implications of method studies for bioaccessibility testing

7 Bioaccessibility data
   7.1 Heavy metal bioaccessibility
   7.2 PAH bioaccessibility
   7.3 Overall contaminant bioaccessbility

8 Bioaccessibility – bioavailability correlations
   8.1 Heavy metal correlations
   8.2 PAH correlations
   8.3 Overall bioaccessibility – bioavailability correlations

9 Application of bioavailability in risk assessment, site examples
   9.1 Rodney Street, Port Colborne, Ontario, Canada
   9.2 Coal tar distillation plant, US
   9.3 Gas manufacturing plant, California, US
   9.4 Metal and PAH contaminated sites, US
   9.5 A hypothetical application example, As in soil

10 Discussion and recommendations

11 References

Appendix