Afdækning af muligheder for etablering af standardværktøjer og/eller -kriterier til vurdering af sundheds- og miljørisici i forbindelse med større uheld (gasudslip) på risikovirksomheder

9 Litteraturliste, referencer og selektiv bibliografi

9.1 Referencer

1. Center for Chemical Process Safety of the American Institute of Chemical Engineers, Guidelines for Use of Vapour Cloud Dispersion Models (sec.eddit.), New York, 1996.

2. Center for Chemical Process Safety of the American Institute of Chemical Engineers, Guidelines for Chemical Process QRA (sec.eddit.), New York, 2000

3. Technica Ltd. Techniques for Assessing Industrial Hazards, technical paper 55, The World Bank

4. “The Yellow Book”, Methods for the Calculation of the Effects of the Escape of Dangerous Materials, Dutch Ministry of Labour, 1978

5. B Ale et al. “The Purple Book”, Guidelines for quantitative risk assessment, Purple Book, Director General for Social Affairs and Employment 1999

6. TNO, “The Green Book” Methods for the Determination of Possible Damage Directorate general of Labour, Holland 1992

7. Eisenberg et al 1975 Vulnerability model; a simulation System for assessing damage resulting from marine Spills (vm1) ada-015-245 US Coast guard

8. Griffiths R.F., The use of probit expressions in the assessment of acute population impact of toxic releases Journal Of Loss Prevention In The Process Industries, 4, 1, 1991

9. Schubach S.,Comparison of probit expressions for the prediction of lethality due to toxic exposure, Journal of Loss Prevention in the Process Industries, Volume 8, Number 4, July 1995, pp. 197-204(8)

10. NIOSH, Documentation for Immediately Dangerous to Life or Health Concentrations (IDLH), 1994

11. AIHA Emergency Response Planning Guidelines Committee, Emergency Response Planning Guidelines, 2002

12. US EPA, The Development of Acute Exposure Guideline Levels (AEGLs), www.epa.gov/oppt/aegl/

13. US Department of Energy, AEGLs, ERPGs, or Rev. 21 TEELs for Chemicals of Concern 2005, www.eh.doe.gov/chem_safety/teel/TEELs_Rev21_Introduction(2).pdf

14. Greim, H.: Entwicklung von Verfahren zur Abschätzung der gesundheitlichen Folgen von Großbränden. Unveröffentlichter Bericht zum Forschungsvorhaben des Bundesamtes für Zivilschutz, München, 1995/6., se også www.umweltbundesamt.de/anlagen/AEGLWEB/

15. UK HSE, A methodology to prioritise substances for possible further development of Acute Exposure Threshold Levels (AETLs). se også www.hse.gov.uk/hid/haztox.htm

16. NIOSH, Registry of Toxic Effects of Chemical Substances (RTECS), www.cdc.gov/niosh/rtecs/default.html

17. J.R.Taylor Use of the toxophore theory in risk assessment, Taylor Associates, 2004

18. Allen B. Richon, An Introduction to QSAR Methodology, Glaxo Wellcome Research, 1997, www.netsci.org/Science/Compchem/feature19.html

19. BJM Ale et al. Benchmark risk analysis models, RIVM report 6100660015, 2001

20. F. Markert, M. Christou, D. Hourtolou, and Z. Nivolianitou, A benchmark exercise on risk analysis of chemical installations, ESMG - symposium, March 2001

21. A.Amendola, S. Contini, I. Ziomas, EFCHE Loss Prevention Conference, Procedures and Uncertainties in Chemical Risk Assessment, Taormina, March 1992

22. Steven Hanna , Philip Chatwin, Edul Chikhliwaia, Richard Londergan, Thomas Spicer , Jeffrey Weil, Results from the model evaluation panel, Plant/Operations Progress Volume 11, Issue 1 , Hanna SR, Chang JC, Strimaitis DG. Uncertainties in source emission rate estimates using dispersion models. Atmos Environ 1990; 24A:2971-2980

23. Hanna SR, Strimaitis DG, ChangJC. Evaluation of 14 hazardous gas models with ammonia and hydrogen fluoride field data. J Hazardous Materials 1991; 26:127-158.

24. Hanna SR. Hazardous gas model evaluations. Is an equitable comparison possible? J Loss Prev in the Process Ind 1994; 7:133-138.

25. Hanna SR, Chang JC, Strimaitis DG. Hazardous gas model evaluation with field observations. Atmos Environ 1993; 27A:2265-2285.

26. Hanna, S. R., J. C. Chang, 1992a: Hazard Response Modeling Uncertainty (A Quantitative Method), Volume I I Evaluation of Commonly Used Hazardous Gas Dispersion Models (American Petroleum Institute, Washington), API Publication Number 4547.

27. Steven R. Hanna, Peter J. Drivas, Joseph J. Chang,.Guidelines for use of vapour cloud dispersion models, 2nd edition, CCPS 1996

28. Hanna, S. R., D. G. Strimaitus, and J. Chang (1990). Results of Hozard Response Model Evaluation Using Desert Tortoise and Goldfish Data Eases., Vol. 1: Summary Report. Washington, Dc , American Petroleum Institute.

29. UK HSE, Safety Report Assesment Guid Chlorine, .hse.gov.uk/comah/sragchl/images/chlorine.pdf

30. J.R.Taylor, The QRA quality project, Taylor Associates , 2006

31. UK HSE, The Buncefield Investigation, Progress Report, 1, 2 og 3, 2006, www.buncefieldinvestigation.gov.uk

32. Britter, R. E., and J. McQuaid (1988). Workbook on the Dispersion of Dense Gases. HSE Contract Research Report No. 17/1988, U.K. Health and Safety Executive.

33. G.D. Kaiser technical background document for offsite Consequence analysis for Anhydrous and aqueous ammonia, chlorine, and Sulfur dioxide, US EPA, www.yosemite.epa.gov/oswer/ceppoweb.nsf/

34. Carissimo B., S.F. Jagger, N.C. Daish , A. Halford, S. Selmer-Olsen, K. Riikonen, J.M. Perroux, J. Würtz, J. Bartzis, N.J. Duijm, K. Ham, M. Schatzmann, and R. Hall, ”The SMEDIS Database and Validation Exercise”, International Journal of Environment and Pollution, 16, 1-6, 2001.

35. Cooper, M.G. A model for jet dispersion in a congested environment, CRR 396, UK HSE 2001

36. K.J.Allwine et al. Overview of URBAN 2000: A Multiscale Field Study of Dispersion through an Urban Environment, Bulletin of the American Meteorological Society: Vol. 83, No. 4, pp. 521–536.

37. US DOD. Joint Urban 2003, Atmospheric Dispersion Study in Oklahoma City, http://ju2003.pnl.gov/

38. Petersen, R.L., “A Wind Tunnel Evaluation of Methods for Estimating Surface Roughness Length at Industrial Facilities” Atmospheric Environment, Vol. 31, No 1, pp 45 -57 , 1997.

39. UK HSE, Flashing liquid jets and two-phase dispersion A review, CRR 403/2002

40. Ramsdale,S.A. Tickle,G.A. ,Review of RELEASE rainout model and the Center for Chemical Process Safety (CCPS) data. UK HSE CRR 277, 2000

41. Abdellah Touil, Jean-Pierre Bigot, Rainout Prediction: Initial Droplet Diameter Experimental Determination, Loss Prevention and Safety Promotion in the Process Industries, 11th International Symposium Loss Prevention 2004, Praha Congress Centre, 31 May – 3 June 2004.

42. Yildiz, D.; Rambaud, P.; Van Beeck, J. ,Droplet size and velocity characterizations of a superheated two-phase flashing jet, 19th Annual Meeting of the Institute for Liquid Atomisation and Spray Systems (Europe), Nottingham, 6-8 September 2004.

43. Patrick Bonnet and Jean-Marc Lacôme, Experimental Study of Accidental Industrial LPG Releases, Ineris, Verneuil-en-Halatte, 60 550, France

44. David W. Johnson, John L. Woodward, RELEASE: A Model with Data to Predict Aerosol Rainout in Accidental Releases, CCPS, 1998

45. Sutton, O. G., 1934: Wind structure and evaporation in a turbulent atmosphere. Proc. Roy. Soc. London, Ser. A, 146, 701–722

46. Pasquill, F., 1943: Evaporation from a plane, free-liquid surface into a turbulent air stream. Proc. Roy. Soc. London, Ser. A, 182, 75–94

47. Mackay, D., and RS Matsugu. 1973The evaporation of volatile liquids. J. Hazardous. Materials 15:343-364.

48. Kawamura P.I., Mackay D., The Evaporation of Volatile Liquids, J.Haz.Mat. 15 343 ,1987

49. Lebuser U., Schecker H.G., Verdampfung von Flüssigkeiten aus offenen Lachen, Dechema - Monographien, Band 107, VCH Verlagsgesellschaft, S.331, 1987

50. Simmons CS, and JM Keller. 2003. Status of models for land surface spills of nonaqueous liquids.PNNL-14350, Pacific Northwest National Laboratory, Richland, WA.

51. Simmons CS, JM Keller, and JL Hylden. 2004. Spills on flat inclined pavements. PNNL-14577, Pacific Northwest National Laboratory, Richland, WA.

52. J. M. Keller og C. S. Simmons, The Influence of Selected Liquid and Soil Properties on the Propagation of Spills Over Flat Permeable Surfaces J. M. Keller, PNNL-15058, Pacific Northwest National Laboratory, Richland, WA.

53. S.Ott og M. Nielsen, Rediphem data base, www.risoe.dk/vea-atu/densegas/rediphem.htm

54. Taylor, J.R. Experimental data for validation of risk analysis models. 7th edition Taylor Associates, 2006

55. Cambridge Environmental Research Consultants, Ltd. (1998), ADMS Technical Specification, CERC, 3 Kings Parade, Cambridge, U.K. CB2 1SJ

56. Berkowicz, R. and H. R. Olesen, 1993: Danish point source dispersion model - OML, MSTLuft-A94, NERI, Roskilde, Denmark

57. Cimorelli A.J., Perry S.G., Venkatram A., Weil J.C., Paine R.J., Wilson R.J., Lee R.F. and Peters W.D. (1998), AERMOD -–Description of Model Formulation (Version 98314 (AERMOD and AERMET) and 98022 (AERMAP). USEPA, RTP, NC 27711, 113 pages.

58. NOAA Introduction to CAMEO, http://archive.orr.noaa.gov/cameo/intro.html

59. DnV software, The PHAST software, http://www.dnv.com/software/all/phast/productInfo.asp

60. Helen Balmforth, Ron Macbeth, Toxic RISKAT version 3.1 - The Inclusion of the Site Risk Methodology HSL/2002/27

61. Michael J. Brown & Gerald E. Streit, Emergency Responders’ Rules-of-Thumb for Air Toxics Releases in Urban Environments, Los Alamos National Laboratory

62. Heskestad, G., Kung, H. C., & Todtenkopf, N. F. (1976). Air entrainment into water sprays and spray curtains. In Proceedings of the ASME Winter annual meeting, Paper 76-WA/FE-40, 2-12.

63. Griolet, F. (1996). Dimensionnement des rideaux d'eau. Modélisation et applications industrielles. Thèse Doct. Sci., Univ. Claude Bernard - Lyon I, Fr. : 218 pp.

64. Fthenakis, V. M., & Blewitt, D. N. (1995). Recent development in modelling mitigation of accidental releases of hazardous gases. Journal of Loss Prevention in the Process Industries, 8, 71-77.

65. Prétrel, H., & Buchlin, J. M. (1997). Experimental study of the hydrodynamic of water-curtain - Application to the attenuation of fire radiation. In Proceedings of the 4th Conference on Experimental Heat Transfer Fluid Mechanics and Thermodynamics, Brussels, 8 pp.

66. Petersen, R.L., and D.N. Blewitt, “Evaluation of Water Spray/Fire Monitor Mitigation Systems for Two Refineries,” Presented at the CCPS Process Plant Safety Symposium, Houston, Texas, May1992.

67. Meroney, R.N., Neff, D.E., Shin, S.H., Steidle, T.C., Tan, T.Z., and Gang Wu, ANALYSIS OF VAPOR BARRIER EXPERIMENTS TO EVALUATE THEIR EFFECTIVENESS AS A MEANS TO MITIGATE HF CLOUD CONCENTRATIONS, for EXXON Research and Engineering Company, HF Vapor Barrier Subcommittee, Florham Park, New Jersey, July 1988, CER88-89RNM-DEN-SHS-TS-TZT-GW-1.

68. Meroney, R.N. and Shin, S.H. FLUID MODELING OF A HEAVY GAS VAPOR DETENTION SYSTEM. Proceedings of Australian Wind Engineering Conference, Hunter Valley, New South Wales, Australia, 7-8 February 1991. CEP90-91-RNM-SHS-10.

69. J.R.Taylor, C.G.Petersen, J Kampmann, L. Schepper, EK Kragh, RS Selig, P.Becher, K.E.Petersen, Kvantitative og kvalitative kriterier for risikoaccept”, Miljøprojekt 112, Miljøstyrelsen 1987

70. EF data projekt

71. TNO, EFFECTS For calculating the physical effects due to hazardous materials releases, www.mep.tno.nl/software/

72. dNV software, SAFETI, www.dnv.com/software/all/safeti/

73. Quest, Canar modelling software, www.questconsult.com/canary.html

74. US EPA, Computer aided management of emergency operations CAMEO, www.epa.gov/swercepp/cameo/

75. Taylor Associates, QRA Pro functional description, QRA Pro model validation, www.itsa.dk/QRA Pro/

76. D.Ermack, Users Manual for SLAB, available from www.weblakes.com

77. J. Havens, T Spicer, A dispersion model for elevated dense gas jet releases, available from www.weblakes.com

78. HGSYSTEM, from www.hgsystem.com

79. Gastar - Dense gas dispersion model, from www.cerc.co.uk/software/gastar.htm

80. S. Ott, GReAT (Gas Release Analysis Tools), from www.risoe.dk/vea-atu/densegas/models.htm

81. Pasquill, F., 1961: The estimation of the dispersion of windborne material. Meteor. Mag., 90, 33–49.

82. Pasquill, F., "Atmospheric dispersion parameters in Gaussian plume modeling. Part II: Possible requirements for change in Turner Workbook values", U.S. EPA Publication 600/4-76-030b, June 1976

83. Turner, D.B., "Workbook of atmospheric dispersion estimates", U.S. EPA Publication AP-26, revised 1970

84. Briggs, G.A., "Plume rise", USAEC Critical Review Series, 1969

85. Smith, F. B., 1973: A scheme for estimating the vertical dispersion of a plume from a source near ground level. NATO CCMS Air Pollution, No. 14.

86. McElroy, J.L. and F. Pooler, 1968: The St. Louis Dispersion Study. U.S. Public Health Service, National Air Pollution Control Administration, Report AP-53.

87. Hanna, SR and RE Britter, Wind Flow and Vapor Cloud Dispersion at Industrial and Urban Sites, AIChE/CCPS 2002

88. A.G. Robins, R. Hall, I.R. Cowan, J.G. Bartzis, A. Albergel, Evaluating modelling uncertainty in CFD predictions of building affected dispersion, International Journal of Environment and Pollution, Volume 14, Numbers 1-6 / 2000

89. Hall, R.C., Dispersion of releases of hazardous materials in the vicinity of buildings, CRR127, UK HSE, 1997

90. Steven R. Hanna, Olav R. Hansen, Seshu Dharmavaram, FLACS CFD air quality model performance evaluation with Kit Fox, MUST, Prairie Grass, and EMU observations Atmospheric Environment 38 (2004) 4675–4687

91. A.K.M. Chua, R.C.W. Kwokb, K.N. Yu Study of pollution dispersion in urban areas using Computational Fluid Dynamics (CFD) and Geographic Information System (GIS) Environmental Modelling & Software 20 (2005) 273–277

92. Sklavounos S, Rigas F.Validation of turbulence models in heavy gas dispersion over obstacles. J Hazard Mater. 2004 Apr 30;108(1-2):9-20.

93. C.J.Lea, A Review of the State-of-the-Art in Gas Explosion Modelling, HSL/2002/02 UK Health and Safety laboratory, 2002

94. EXSIM . Joint-Venture: Shell Global Solutions, UK (www.shellglobalsolutions.com), Telemark Technological R&D Centre. Norway (www.tel-tek.no), Cambridge University, UMIST.

95. The FLACS (FLame ACceleration Simulator) CMR-GEXCON, Norway (was Christian Michelsen Research Institute). http://www.gexcon.com/index.php?src=flacs/overview.html

96. AutoReaGas, ANSYS. http://www.ansys.com, At the time of the writing of the report, (AutoReaGas originated from joint venture between Century Dynamics Ltd. and TNO, and ANSYS acquired Century Dynamics in January 2005).

97. Fluidyn PANACHE - PANEPR validation with dense gas dispersion experiments www.fluidyn.com

98. Wei Li, Zhe Fan, Xiaoming Wei, and Arie Kaufman, GPU-Based Flow Simulation with Complex Boundaries. Technical Report 031105, Computer Science Department, SUNY at Stony Brook, Nov 2003.

99. NIST Fire Dynamics Simulator (FDS) and Smokeview, www.fire.nist.gov/fds/

100. S Jagger, Guidance for nsd on the assessment of cfd simulations in safety cases FS/97/8, UK HEALTH AND SAFETY LABORATORY 1997

101. ARGOS description, prolog development center, www.pdc.dk/uk/cbrn/Information/argos/argos-technical.htm

102. Thykier-Nielsen, S., Deme, S. and Mikkelsen T. (1998). RIMPUFF, Atmospheric Dispersion Model, RIMDOS8, Users Guide. Department of Wind Energy and Atmospheric Physics, Risø National Laboratory, Roskilde, Denmark, June 1998.

103. Poul Astrup, Søren Thykier-Nielsen, Torben Mikkelsen, In-town dispersion calculations with RIMPUFF and UDM, Risø National Laboratory, November 2005

104. Hall, D.J.; Spanton, A.M.; Griffiths, I.H.; Hargarve, M; and Walker S., The Urban Dispersion Model (UDM): Version 2.2 Technical Documentation., DSTL/TR04774. 2 September, 2002.

105. Brook, D. R., N.V. Beck, C. M. Clem, D. C. Strickland, I.H.Griffiths, D. J. Hall,R. D. Kingdon, J. M. Hargrave, Validation of the Urban Dispersion Model (UDM), 8th Int. Conf. on Harmonisation within Atmospheric Dispersion Modelling for Regulatory Purposes

106. Hanna SR, Chang JC. Kit Fox dense gas dispersion field experiments and HEGADAS model testing. Atmos Environ 2001; 35:2231-2242.

107. B. De Marchi, S. Funtowicz, and J. Ravetz, Seveso: A paradoxical classic disaster, www.unu.edu/unupress/unupbooks/uu21le/uu21le09.htm

108. Accident summary on the Flixborough (Nypro UK) explosion 1st June 1974, www.hse.gov.uk/comah/sragtech/caseflixboroug74.htm

109. C. Whetton, Ammonium Nitrate Explosion at AZF, Toulouse, France, www.saunalahti.fi/ility/Dossiers/Doss%20AZF.htm

110. UK HSE, HID statistics report, HSR 2002 002, Offshore hydrocarbon releases statistics and analysis, 2002

111. Taylor, J.R Process plant release frequency and failure rate data with root causes, Vol 1 to Vol 3, Issue 6, Taylor Associates 2004

112. Fauske H.K. and Epstein M., Source term considerations in connection with Chemical Accidents and Vapour Cloud Modelling. Int. Conf. Vapour Cloud Modelling AICHE 1987

113. Lackmé, Claude (1980), Thermodynamics of Critical Two-Phase Discharge from Long Pipes of Initially Subcooled Water. Heat Transfer in Nuclear Safety Reactors, pp 391-407.

114. Leung, J.C. , A Generalized Correlation for One-component Homegeneous Equilibrium Flashing Choked Flow, AIChE Journal, Vol 32, No. 10, pp 1743-1746, 1986

115. Leung, J.C. , M. Grolmes, The Discharge of Two-Phase Flashing Flow in a Horizontal Duct, AIChE Journal, Vol 33, No. 3, 1987

116. Kukkonen, J. Modelling Source Terms for the Atmospheric Dispersion of Hazardous Substances, Commentationes Physico-Mathematicae 115, 1990

117. Fletcher, B., Flashing flow Through Orifices and Pipes. AICHE Loss Prevention symposium, Denver 1983.

118. Nyren K., Winter S. , Two phase discharge of liquified gases through pipes. Fields experiments with ammonia and theoretical model., 4 th International Symposium on Loss Prevention and Safety Promotion in the Process Industries, No 33 Vol. 1, p. E1-E11, 1983

119. Webber D M and Jones S J “A model of spreading vaporising pools”, in “International Conference on Vapor Cloud Modeling”, Boston Massachusetts, USA, November 1987,

120. Wu, J. M., and J. M. Schroy (1979). "Emissions from Spills, APCA and WPCFJoint Conference on Control of Specific (Toxic) Pollutants. Feb. 13-16, Gainesville, FL: Air Pollution Control Association, Florida Section.

121. Fleischer, M. T. (1980.). SPILLS: An Evaporation/Air Dispersion Model for Chemical Spills on Land. Houston, TX: Shell Development Center.

122. Rémy Bouet, Ammoniac, Essais de dispersion atmosphe´rique à grande échelle, INERIS, 1999

123. RICOU, F.P. and SPALDING, D.B. (1961). Measurements of entrainment by axisymmetrical turbulent jets. J. Fluid Mech., 11(1), 21

124. Chen,C.J. og Rodi,W. Turbulent Free Jets, Pergamon Press, 1980

125. Hoot T G, Meroney R N, and Peterka J A: Wind Tunnel Tests of Negatively Buoyant Plumes; Fluid Dynamics and Diffusion Laboratory, Colorado State University; distributed by National Technical Information Service, US Department of Commerce, Report PB-231-590, October

126. Woodward, J.L and A. Papadourakis (1991). “Modeling of Droplet Entrainment and Evaporation in a Dispersing Jet,” in CCPS (1991), pp. 147-167.

127. Hanna, S.R. and R.E. Britter, 2002: Wind Flow and Vapor Cloud Dispersion at Industrial and Urban Sites. ISBN No: 0-8169-0863-X, CCPS/AIChE. 3 Park Ave., New York, NY 10016-5901, 140 pages + CD-ROM

128. Cox, R.A and Carpenter R.J., Further Developments of a Dense Vapour Cloud Dispersion Model in heavy Gas and Risk Assessment, in Hartwig 1980.

129. H.W.M. Witlox, A. Holt, A unified model for jet, heavy and passive dispersion including droplet rainout and re-evaporation, in: International Conference and Workshop on Modelling the Consequences of Accidental Releases of Hazardous Materials, CCPS, San Francisco, CA, September 28–October 1, 1999

130. Lines,IG Kenyon,YM Deaves,DM, Assessment of the validity of current dense gas dispersion models at low wind speeds, CRR 275, UK HSE

131. Meroney, R. N., LIFT OFF OF BUOYANT GAS INITIALLY ON THE GROUND, J. of Industrial Aerodynamics, Vol. 5 (1979) pp. 1-11, CEP77-78RNM66

132. Lonsdale, H., “Ammonia Tank Failure - South Africa,” Ammonia Plant Safety 17 (1975),

133. US EPA. Catastrophic failure of storage tanks, Chemical Safety Alert, yosemite.epa.gov/oswer/ceppoweb.nsf/

134. FLETCHER, B. (1982). Sudden discharge of superheated fluid to atmosphere. The Assessment of Major Hazards (Rugby: Instn Chem. Engrs), p. 25 (Ottawa), vol. 2, p. 607

135. HESS, K., HOFFMANN, W. and STOECKEL, A. (1974). Propagation processes after the bursting of tanks filled with liquid propane ± experiments and mathematical model. Loss Prevention and Safety Promotion 1, p. 227

136. VAN ULDEN, A.P. (1974). On the spreading of a heavy gas released near the ground. Loss Prevention and Safety Promotion, 1, p. 221

137. VAN ULDEN, A.P. (1987). The heavy gas mixing process in still air at Thorney Island and the laboratory. J. Haz. Materials, 16, 411 model. Atmos. Environ., 21, 1573

138. WHEATLEY, C.J., BRIGHTON, P.W.M. and PRINCE, A.J. (1986). Comparison between data from heavy gas dispersion experiments at Thorney island and predictions of simple models. In de Wispelaere, C., Schiermeier,

139. EMBLEM, K. and MADSEN, O.K. (1986). Full scale test of a water curtain in operation. Loss Prevention and Safety Promotion 5, p. 461

140. Meroney, R. N. and Neff, D. E., NUMERICAL ASSESSMENT OF WATER SPRAY BARRIERS FOR DISPERSING DENSE GASES, Journal of Boundary-Layer Meteorology, Vol. 31, March 1984, pp. 233-247, CEP83-84RNM-DEN1.

141. BARTH, U. (1992). Steam curtains, mitigation of heavy gas clouds on industrial terrain. Loss Prevention and Safety Promotion, 7, vol. 2, 96-1

142. JEULINK, J. (1983). Mitigation of the evaporation of liquids by fire fighting foams. Loss Prevention and Safety Promotion 4, vol. 1, p. E12

143. Brighton, P. W. M. (1986). Heavy-gas dispersion from sources inside building or in their wakes. In Proceedings of the Symposium of the Institution of Chemical Engineers - Refinement of Estimates of the Consequences of Heavy Toxic Vapour Releases, North Western Branch Papers, Manchester, 1, 2.1-2.18.

144. ] Webber D M “A model for pool spreading and vaporisation and its implementation in the computer code G*A*S*P”, SRD/HSE R507, September 1990

145. BRIGHTON, P.W.M. et al. (1994). Comparison of heavy gas dispersion models for instantaneous releases. J. Haz. Materials, 36, 193

146. BRIGHTON, P.W. (1985b). Evaporation from a plane liquid surface into a turbulent boundary layer. J. Fluid Mech., 159, 323

147. Deaves, D.M. Simple modelling of gas releases from buildings, CRR 110, UK HSE, 1996

9.2 Bibliografi

Litteratur der blev studeret men ikke refereret.

Generelt om risikoanalyse

1. Spouge, A guide to quantitative risk assessment for offshore installations, Centre for Marine and Petroleum Technology, 1999

Toxicity

1. Users Guide to Hazardous Substance Data Banks Available in OECD Members Countries, OECD/GD(91)102.

2. Lethal Toxicity of Chlorine, J. Haz.Mat. 22, 1989 pp13-56.

3. Ammonia Toxicity Monograph, IChem E, Rugby, 1988.

4. S.Schubach " Comparison of probit expression for the prediction of lethal due to toxic exposure" J. Loss Prev. Process Ind. vo.8, No.4 pp 197-204 (1995).

5. D.J.Finney "Probit Analysis" Cambridge University Press, Cambridge (1971).

6. NIOSH, Pocket Guide to Chemical Hazards, U.S. Department of Health and Human Services (1994).

7. Fairhurst S and Turner RM (1993) Toxicological assessments in relation to major hazards. Journal of Hazardous Materials 33, 215-227

8. Davies P C and Purdy G (1986) Toxic Risk Assessments - The effect of Being Indoors. Refinement of Estimates of the Consequences of Heavy Toxic Vapour Releases. I.Chem.E. Symposium No. 1, Manchester, January 1986

9. Franks AP, Harper PJ and Bilo M (1996) The relationship between risk of death and risk of dangerous dose for toxic substances. Journal of Hazardous Materials 51, 11-34

To fase udslip

10. Hans-Christen Salvesen, Modelling of release at a surface in CFD code FLACS, Ref. No.: GexCon-03-F46103 – 4 (draft report)

11. Dilek Yildiz, Patrick. Rambaud, Jeroen van Beeck, Jean-Marie Buchlin, A Study on the Dynamics of a Flashing Jet, FLIE final report, 2005.

12. P. Bonnet, Description of experimental large scale two-phase release jets, FLIE final report, 2005.

13. A.E. Holdø, R.K. Calay et al. CFD Modelling of flashing jet dispersion, FLIE final report, 2005.

14. BEHNIA M. et al (1999), Numerical study of turbulent heat transfer in confined and unconfined impinging jets, International Journal of Heat and Fluid Flow, No. 20, p. 1-9

15. BOUET, "Descriptif des moyens d’essais pour la réalisation de rejets diphasiques à grande échelle", Ref : INERIS DRA-PBn- 2004-N°41508 /rapport_operation_f_PBn_nv. 1999.

16. Ammoniac – Essais de dispersion atmosphérique à gr ande échelle, Rapport final, INERIS-DRA-Rbo-1999-20410, Ministère de l’Aménagement du Territoire et de l’Environnement.

17. BROWN, R. and YORK, J. L., (1961).Sprays formed by flashing liquid jets, A.I.Ch.E. Journal 8 (1961) pp149-153.

18. LACKME, Claude (1980), Thermodynamics of Critical Two-Phase Discharge from Long Pipes of Initially Subcooled Water. Heat Transfer in Nuclear Safety Reactors, pp 391-407.

19. SALLET, D. et al., 1978. The influence of the Thermodynamic Properties on the Calculation of Homogenous Mass Flow rates. ASME paper 78-WA/HT-48.

20. D.W. SALLET, 1990. Critical two-phase mass flow rates of liquefied gases, J. Loss Prev. Process Ind., 1990, vol. 3, p. 38.

21. Multi-dimensional modeling of thin liquids films and spray-wall interactions resulting from impinging sprays,International Journal of Heat and Mass Transfer, No. 21, p. 3037-3054

22. VAN DEN AKKER H.E.A., SNOEY H., SPOELSTRA H.(1983) Discharges of pressurised liquified gases through apertures and pipes4 th International Symposium on Loss Prevention and Safety Promotion in the Process Industries, No 33 Vol. 1, p. E23-E35

23. Impact of drops on solid surfaces : self-similar capillary waves, and splashing as a new type of kinematic discontinuity Journal of Fluid Mechanics, Vol. 283, p. 141-173

 



Version 1.0 Marts 2007, © Miljøstyrelsen.